Please wait a minute...
水泥技术, 2018, 1(1): 83-88    
  工程技术 本期目录 | 过刊浏览 | 高级检索 |
圆形钢管混凝土柱框架典型节点受力性能分析
天津水泥工业设计研究院有限公司
Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure
Tianjin Cement Industry Design & Research Institute Co., Ltd.
下载:  PDF (2780KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 圆形钢管混凝土柱框架结构节点构造复杂,目前国内对其受力性能的研究较少。对于很多工程中应用到的节点,没有规范或规程可以作为其设计的依据,因此有必要对圆形钢管混凝土柱框架节点的受力性能进行深入研究。本文采用有限元软件ANSYS建立节点域精细化模型,进行节点受力性能的非线性有限元分析。结果表明,圆形钢管混凝土柱框架结构节点具有良好的承载能力,满足设计要求;加劲板能够有效改善支撑内力较大节点的受力性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王庆江
关键词:  圆形钢管混凝土柱框架  节点  受力性能  支撑  加劲板    
Abstract: The structures of the joints of the concrete filled tubular frame structure are complicated. So far, researches on the mechanical performance of certain types of joints are not enough and there is no specification or code which could address this issue. Thus, it is the necessity to study thoroughly the mechanical performance of the joints. In this study, finite element software ANSYS is introduced to conduct researches on the mechanical performances of the joints. Then the function and setting principles underpinning the stiffened plate are discussed. Results show that, the joints have good bearing capacity that can meet the requirements of the relevant provisions, and stiffened plates can effectively improve the mechanical performance of the joints.
Key words:  the concrete filled tubular frame structure    beam column joint    mechanical performance    brace    stiffened plate
收稿日期:  2017-05-05                出版日期:  2018-01-25      发布日期:  2018-03-28      整期出版日期:  2018-01-25
TU398.9  
引用本文:    
王庆江. 圆形钢管混凝土柱框架典型节点受力性能分析[J]. 水泥技术, 2018, 1(1): 83-88.
WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure. Cement Technology, 2018, 1(1): 83-88.
链接本文:  
http://www.cemteck.com/CN/  或          http://www.cemteck.com/CN/Y2018/V1/I1/83
No related articles found!
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview