Please wait a minute...
水泥技术, 2022, 1(1): 42-47    doi: 10.19698/j.cnki.1001-6171.20221042
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
基于电信号特征分析的电机故障诊断技术
华新水泥股份有限公司
Motor Faults Diagnosis Based on Electrical Signature Analysis
Huaxin Cement Co., Ltd.
下载:  PDF (4403KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了电机故障诊断技术平台的组成,分析了电机常见故障下电信号的特征。利用宜昌和景洪工厂两台电机进行了实际对比测试,宜昌工厂电机定子电流特征频率在49.2Hz时表现出峰值-36.08dB,在50.8Hz时表现峰值则为-37.23dB,表明电机存在转子断条故障;景洪工厂电机在转子特征频率为113.51Hz时,出现峰值-58.47dB,表明电机存在静态偏心故障。经电机现场抽芯检查,验证了电机故障快速诊断平台给出的电机健康状态评估结果,证实了基于电信号特征分析的电机故障诊断技术的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱亚平
万兵
袁志刚
关键词:  电机故障  特征频谱  气隙偏心  倍频测试    
Abstract: The monitoring platform for motor fault diagnosis is established, and then the characteristics of electrical signals of different motor faults are analyzed. Two motors in plants of Yichang and Jinghong were used for comparative tests. The former motor in Yichang showed the frequency peaks of -36.08dB at 49.2Hz and of -37.23dB at 50.8Hz, showing that the motor has a broken rotor bar fault; the latter motor in Jinghong has a rotor signature when the frequency peak appears of -58.47dB at 113.51Hz, showing that the motor has a static eccentricity fault. With the rotor pulling out at the time, the evaluation results of the motor status given by the motor fault diagnosis platform is verified, and confirms the accuracy of the motor fault diagnosis technology based on the analysis of electrical signal analysis.
Key words:  motor faults    frequency spectrum    air-gap eccentricity    doubling frequency analysis
收稿日期:  2021-07-12                出版日期:  2022-01-25      发布日期:  2022-01-21      整期出版日期:  2022-01-25
ZTFLH:  TM307  
引用本文:    
朱亚平, 万兵, 袁志刚. 基于电信号特征分析的电机故障诊断技术[J]. 水泥技术, 2022, 1(1): 42-47.
ZHU Yaping, WAN Bing, YUAN Zhigang. Motor Faults Diagnosis Based on Electrical Signature Analysis. Cement Technology, 2022, 1(1): 42-47.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20221042  或          http://www.cemteck.com/CN/Y2022/V1/I1/42
[1] 郭立新, 周富豪. 电机轴电流可能误报轴承温度[J]. 水泥技术, 2015, 1(5): 78-78.
[2] 杨建华, 刘葳. 电动机保护器在水泥行业的应用[J]. 水泥技术, 2009, 1(5): 105-106.
[3] 汪洋. 水泥厂高压电机故障电流分析及保护计算[J]. 水泥技术, 2004, 1(4): 89-90.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview