Please wait a minute...
水泥技术, 2022, 1(2): 80-85    doi: 10.19698/j.cnki.1001-6171.20222080
  余热发电 本期目录 | 过刊浏览 | 高级检索 |
ORC与SRC余热发电系统的选型原则
中材节能股份有限公司,天津  300400
Selection Principle of ORC and SRC Technology in Waste Heat Recovery System
Sinoma Energy Conservation Limited, Tianjin 300400, China
下载:  PDF (2517KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
介绍了ORC余热发电技术国内外发展现状。ORC余热发电系统是以低沸点有机物为工质的朗肯循环,是一种可以将低品位热能高效转化为电能的余热发电技术,主要由烟气余热回收系统、导热油—有机工质热交换系统及有机工质发电系统三部分组成,其工作原理与SRC余热发电系统相同。通过对比不同条件下ORC和SRC余热发电系统的构成和发电效率,提出了ORC和SRC余热发电系统的选型原则。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶军普
关键词:  低沸点有机物  工作介质  余热条件  气象条件    
Abstract: 
The current status of ORC waste heat power generation technology  at home and abroad is introduced. The ORC waste heat power generation system is a Rankine cycle with low-boiling organic matter as the working fluid. It is a waste heat power generation technology that can efficiently convert low-grade thermal energy into electrical energy. It is mainly composed of three parts: the flue gas waste heat recovery system, oil-organic working fluid heat exchange system and organic working fluid power generation system. Its working principle is the same as that of the SRC waste heat power generation system. By comparing the composition and power generation efficiency of ORC and SRC waste heat power generation systems under different conditions, the selection principles of ORC and SRC waste heat power generation systems are proposed.
Key words:  low boiling point organics    working medium    waste heat condition    meteorological condition
收稿日期:  2021-07-28                出版日期:  2022-03-25      发布日期:  2022-03-25      整期出版日期:  2022-03-25
ZTFLH:  TQ172.622.22  
引用本文:    
陶军普. ORC与SRC余热发电系统的选型原则[J]. 水泥技术, 2022, 1(2): 80-85.
TAO Junpu. Selection Principle of ORC and SRC Technology in Waste Heat Recovery System. Cement Technology, 2022, 1(2): 80-85.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20222080  或          http://www.cemteck.com/CN/Y2022/V1/I2/80
[1] 张福滨, 葛强, 王艳婷, 程罡. 便于水泥厂电站巡检工作的通道设计[J]. 水泥技术, 2022, 1(3): 49-51.
[2] 李俊. 余热发电DCS & DEH控制系统改造[J]. 水泥技术, 2022, 1(1): 92-96.
[3] 魏振洋, 赵锋. 水泥窑工艺操作对余热发电效率的影响[J]. 水泥技术, 2021, 1(5): 92-95.
[4] 王巧林. 水泥回转窑孤网运行经验探讨[J]. 水泥技术, 2021, 1(4): 94-96.
[5] 董伟强. 优化控制系统在水泥窑余热电站上的应用[J]. 水泥技术, 2021, 1(4): 97-101.
[6] 李大庆.
水泥厂余热电站发电机中性点接地方式的研究
[J]. 水泥技术, 2020, 1(4): 82-86.
[7] 范文礼, 杨海林.
低温余热发电凝汽式汽轮机真空系统改造
[J]. 水泥技术, 2020, 1(4): 87-89.
[8] 马哲.
实现余热电站负荷自动调整的简易方法
[J]. 水泥技术, 2020, 1(3): 64-66.
[9] 陈宝阔, 贺伯君, 楼剑.
余热电站能源数据管理系统简介
[J]. 水泥技术, 2020, 1(3): 67-69.
[10] 王权, 秦学恒. 水泥熟料生产线余热发电废水零排放综合利用实例[J]. 水泥技术, 2020, 1(1): 88-90.
[11] 赵娴, 陈宝阔.
新型清灰装置在硅业余热发电中的应用
[J]. 水泥技术, 2020, 1(1): 91-93.
[12] 曾海裕.
油环真空装置的组成及操作要点
[J]. 水泥技术, 2019, 1(5): 97-98.
[13] 王建峰.
余热电站汽轮发电机组轴振大的处理
[J]. 水泥技术, 2019, 1(4): 61-65.
[14] 王海涛, 贾津秋. 余热发电热力系统不平衡原因及管理与维护[J]. 水泥技术, 2019, 1(4): 66-68.
[15] 武猛.
水泥工厂余热电站站用电率计算方法分析
[J]. 水泥技术, 2019, 1(3): 77-80.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview