Please wait a minute...
水泥技术, 2022, 1(5): 41-46    doi: 10.19698/j.cnki.1001-6171.20225041
  技术改造 本期目录 | 过刊浏览 | 高级检索 |
辊磨减速机静压轴承瓦面损伤原因及处理措施
唐山盾石建筑工程有限责任公司
Damage Causes and Treatment Measures of Hydrostatic Bearing Surface of Roller Mill Reducer
Tangshan Dunshi Construction Engineering Co., Ltd. 
下载:  PDF (7960KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
辊磨减速机静压轴承表面巴氏合金存在贯穿划痕并伴有铁质杂质镶嵌,同时,输出法兰推力面上存在同心圆形状的沟槽拉伤,此损伤降低了辊磨减速机运转可靠性,易引发设备事故。经拆解减速机、清理高压油分配器内置单向阀、检查润滑油输送管路,找到了润滑油中铁质杂质产生的原因。通过采取将柱塞式高压油泵更换为齿轮式高压油泵,加强润滑油质的日常检测等措施,消除了设备运行隐患,提高了辊磨减速机运转可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋宇范
关键词:  辊磨  静压轴承  高压油泵  减速机    
Abstract: 
Babbitt metal on the hydrostatic bearing surface of the roller mill reducer has through scratches and iron impurities embedded, and at the same time, concentric grooves are pulled on the thrust surface of the output flange, which reduces the operational reliability of the roller mill reducer and easily leads to equipment accidents. After disassembling the reducer, cleaning the one-way valve in the high-pressure oil distributor, and checking the lubricating oil delivery pipeline, the causes of iron impurities in lubricating oil were found. By replacing plunger-type high-pressure oil pump with gear-type high-pressure oil pump and strengthening daily inspection of lubricating oil quality, the hidden trouble of equipment operation is eliminated, and the operational reliability of roller mill reducer is improved.
Key words:  roller grinding    hydrostatic bearing    high pressure oil pump    reducer
收稿日期:  2021-12-27      修回日期:  2022-09-25           出版日期:  2022-09-25      发布日期:  2022-09-25      整期出版日期:  2022-09-25
ZTFLH:  TQ172.632.5   
引用本文:    
宋宇范. 辊磨减速机静压轴承瓦面损伤原因及处理措施[J]. 水泥技术, 2022, 1(5): 41-46.
SONG Yufan. Damage Causes and Treatment Measures of Hydrostatic Bearing Surface of Roller Mill Reducer. Cement Technology, 2022, 1(5): 41-46.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20225041  或          http://www.cemteck.com/CN/Y2022/V1/I5/41
[1] 彭凌云, 赵海洋, 刘金磊. TRM辊磨粉磨抗硫酸盐水泥的应用[J]. 水泥技术, 2022, 1(4): 34-38,46.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview