Please wait a minute...
水泥技术, 2020, 1(2): 21-27    doi: 10.19698/j.cnki.1001-6171.20202021
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
球磨机衬板材料及失效形式分析
安徽海螺水泥股份有限公司
Analysis of Lining Plate Material of Ball Mill and Its Failure Mode
Anhui Conch Cement Co., Ltd.
下载:  PDF (2020KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了球磨机衬板所用的金属、橡胶及复合材料的性能及研究进展,其中耐磨铸铁有良好的耐蚀和抗氧化性,马氏体钢在中等冲击磨损情况下,综合力学性能好,贝氏体钢淬透性好,马氏体-贝氏体钢在保持较高强度的同时,可提高材料的塑性和冲击韧性,高锰钢具有较高的冲击性能和耐磨性;橡胶衬板重量轻,易安装,噪声小,消耗动力小,但不适于干法原料球磨机;复合材料具有可设计性和良好的综合性能。最后,概述了衬板的失效形式,磨料磨损除与材料硬度有关外,还与磨料的硬度与材料的硬度比有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓波
关键词:  耐磨材料  橡胶衬板  失效形式  硬度    
Abstract: The properties and research progress of metals, rubber and composite materials used for the liner board of ball mills were introduced. Wear-resistant cast iron is featured with good corrosion resistance and oxidation resistance, martensitic steel with good comprehensive mechanical properties under moderate impact wear, and bainitic steel with good hardenability; martensitic/bainitic steel can improve ductility and impact tenacity of materials while maintaining high strength, and high manganese steel shows high impact performance and abrasive resistance. Rubber lining is light in weight, easy for installation, and low in noise and power consumption, but it is not suitable for dry type ball mills, while composite materials show the satisfactory designability and good comprehensive performance. Finally, the failure modes of lining were summarized, notably, abrasive wear is not only related to the hardness of materials, but also to the ratio of the hardness of the abrasive to the hardness of materials.
Key words:  wear-resistant material    rubber lining plate    failure mode    hardness
收稿日期:  2019-11-22                出版日期:  2020-03-25      发布日期:  2020-04-01      整期出版日期:  2020-03-25
ZTFLH:  TD453  
引用本文:    
李晓波.
球磨机衬板材料及失效形式分析
[J]. 水泥技术, 2020, 1(2): 21-27.
LI Xiaobo. Analysis of Lining Plate Material of Ball Mill and Its Failure Mode. Cement Technology, 2020, 1(2): 21-27.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20202021  或          http://www.cemteck.com/CN/Y2020/V1/I2/21
[1] 丁再珍, 张峰亮. 辊磨磨辊辊套和磨盘衬板材质的发展和选择[J]. 水泥技术, 2017, 1(5): 53-55.
[2] 丛晓静. 回转窑大小齿轮磨损原因分析及解决方案[J]. 水泥技术, 2017, 1(1): 60-63.
[3] 付晓丽.
Fe-C-Mn-W系堆焊耐磨层的制备与性能研究
[J]. 水泥技术, 2013, 1(2): 26-30.
[4] 邓荣娟, 刘旭, 王文清.
燃烧器头部组件用新型高温耐磨材料的研究
[J]. 水泥技术, 2012, 1(3): 82-84.
[5] 姜永涛, 陈宏伟, 徐鸿钧, 赵玉良. 矿渣辊磨的抗磨损设计[J]. 水泥技术, 2012, 1(3): 37-41.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview