Please wait a minute...
水泥技术, 2021, 1(3): 59-62    doi: 10.19698/j.cnki.1001-6171.20213059
  生产技术 本期目录 | 过刊浏览 | 高级检索 |
金属铁对钢渣粉制备能耗的影响
天津水泥工业设计研究院有限公司
Influence of Metallic Iron Content on the Power Consumption of Steel Slag Grinding
Tianjin Cement Industry Design & Research Institute Co., Ltd.
下载:  PDF (2564KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过实验室试验和工业应用实践发现,随着入磨钢渣含金属铁量的增加,钢渣粉制备能耗也相应增加,钢渣易磨性也受到影响。为降低粉磨电耗及生产维护成本,粉磨系统中应配置高效除铁装置。在工业应用中,入磨钢渣含金属铁量宜控制在1.5%以下。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜鑫
聂文海
柴星腾
石国平
关键词:  钢渣  易磨性  粉磨能耗  金属铁    
Abstract: Through the laboratory tests and industrial application, it is found that the more metallic iron content, the higher power consumption of steel slag grinding. The grindability of steel slag is also affected. In order to reduce the grinding power consumption and maintenance costs, the grinding system should be equipped with high-efficiency iron removal devices. The metallic iron content of steel slag should be controlled below 1.5% during the industry application.
Key words:  steel slag    grindability    grinding power consumption    metallic iron
收稿日期:  2021-01-15                出版日期:  2021-05-25      发布日期:  2021-05-26      整期出版日期:  2021-05-25
ZTFLH:  TQ172.632.5  
基金资助: 国家重点研发计划资助项目(2019YFC1907102)
引用本文:    
杜鑫, 聂文海, 柴星腾, 石国平. 金属铁对钢渣粉制备能耗的影响[J]. 水泥技术, 2021, 1(3): 59-62.
DU Xin, NIE Wenhai, CHAI Xingteng, SHI Guoping. Influence of Metallic Iron Content on the Power Consumption of Steel Slag Grinding. Cement Technology, 2021, 1(3): 59-62.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20213059  或          http://www.cemteck.com/CN/Y2021/V1/I3/59
[1] 刘迪, 何毛, 陈军, 聂文海, 赵剑波. 粉煤灰易磨性及活性指数研究分析[J]. 水泥技术, 2021, 1(4): 37-39.
[2] 侯国锋, 张黎, 褚旭, 王复然, 石国平, 许芬. 辊压机终粉磨系统生产钢铁渣粉工艺设计及优化[J]. 水泥技术, 2017, 1(2): 45-48.
[3] 宋小鹏, 宋留庆. TRM铁矿石辊磨的设计与应用[J]. 水泥技术, 2017, 1(1): 30-33.
[4] 张爱全. 钢渣性能及其在水泥中的应用研究[J]. 水泥技术, 2016, 1(5): 35-39.
[5] 侯国锋. 辊压机终粉磨生产矿渣微粉的实践[J]. 水泥技术, 2015, 1(5): 48-49.
[6] 何玉鑫, 诸华军, 华苏东, 万建东. 钢渣水泥抹面砂浆性能研究[J]. 水泥技术, 2015, 1(1): 32-36.
[7] 宋子新. 钢渣与矿渣对水泥性能影响的对比研究[J]. 水泥技术, 2013, 1(1): 35-37.
[8] 蔡振雷, 张玉柱, 龙跃, 邢宏伟, 田铁磊. 改性钢渣作水泥混合材的基础性能研究[J]. 水泥技术, 2012, 1(5): 28-30.
[9] 施惠生、, 李东锋, 吴凯, 郭晓潞、. 钢渣对水泥混凝土性能影响的研究进展[J]. 水泥技术, 2011, 1(5): 29-34.
[10] 刘智伟, 许倩, 李志峰, 种振宇, 孙庆亮.
转炉钢渣球磨尾泥活化技术的实验研究
[J]. 水泥技术, 2011, 1(1): 41-44.
[11] 石国平. 钢渣微粉加工工艺探讨[J]. 水泥技术, 2010, 1(5): 77-81.
[12] 施惠生, 郭蕾. 钢渣对硅酸盐水泥水化硬化的影响研究[J]. 水泥技术, 2004, 1(2): 21-24.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview