固体废弃物,热解反应,硫、氮元素,BP神经网络,复合型算法 ," /> 固体废弃物,热解反应,硫、氮元素,BP神经网络,复合型算法 ,"/> solid waste,pyrolysis reaction, sulfur and nitrogen elements,BP neural network,composite algorithm ,"/> <p class="MsoNormal"> <span>基于神经网络</span><span>-</span><span>复合形算法的水泥窑协同热解固废硫、氮迁移预测</span>
Please wait a minute...
水泥技术, 2025, 1(6): 9-17    doi: 10.19698/j.cnki.1001-6171.20256009
  中材国际第三届水泥绿色智能发展大会专题—数字智能 本期目录 | 过刊浏览 | 高级检索 |

基于神经网络-复合形算法的水泥窑协同热解固废硫、氮迁移预测

1 中国建材装备集团有限公司合肥水泥研究设计院有限公司,安徽  合肥  230051

2 中国科学院广州能源研究所,广东  广州510640;

 

Prediction of Sulfur and Nitrogen Migration During the Collaborative Pyrolysis of Solid Waste in Cement Kilns Based on Neural Network-composite Algorithm

1 CNBM Equipment Group, Hefei Cement Research & Design Institute Co., Ltd. , Hefei Anhui 230051, China

2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou Guangdong 510640, China

下载:  PDF (1385KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过选择不同种类的固体废弃物样品进行水泥窑协同热解实验,探究了在不同热解温度、停留时间、载气流量以及升温速率影响下,固、液、气三态产物中硫、氮的分布规律。基于BP神经网络原理,利用Matlab神经网络工具箱,建立了针对不同种类废弃物在不同反应条件下热解产物产率的分布模型。模型的输入条件为反应工况和样品特性参数,输出结果为硫、氮在三态产物中的占比,模型预测值与实验值吻合良好,氮、硫元素分布预测精度较高;同时,结合复合形算法对固体废弃物的样品特性参数寻优,对样品组成与配比进行优化设计,结果符合水泥窑固硫控氮目标,表明该模型对热解过程模拟的可行性与有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾春晗
张涵
宋谦石
汪小憨
关键词:  固体废弃物')" href="#">

固体废弃物  热解反应  硫、氮元素  BP神经网络  复合型算法     

Abstract: 

By selecting different types of solid waste samples for cement kiln co-pyrolysis experiments, the distribution patterns of sulfur and nitrogen in solid, liquid, and gas products were explored under the influence of different pyrolysis temperatures, residence times, carrier gas flow rate, and heating rate. Based on the principle of Back progatiom BP) neural network and using Matlab neural network toolbox, a distribution model of pyrolysis product yield for different types of waste under different reaction conditions was established. The input conditions of the model are reaction conditions and sample characteristic parameters, and the output results are the proportion of sulfur and nitrogen in the three-state products. The predicted values of the model are in good agreement with the experimental values, and the accuracy of predicting the distribution of nitrogen and sulfur elements is high; Furthermore time, the composite algorithm was used to optimize the sample characteristic parameters of solid waste, and the sample composition and ratio were optimized. The results met the goal of sulfur and nitrogen control in cement kilns, indicating the feasibility and effectiveness of the model for simulating the pyrolysis process.

Key words:  solid waste')" href="#">

solid waste    pyrolysis reaction    sulfur and nitrogen elements    BP neural network    composite algorithm

收稿日期:  2025-04-18      修回日期:  2025-11-25           出版日期:  2025-11-25      发布日期:  2025-11-25      整期出版日期:  2025-11-25
ZTFLH:  TQ172.6  
通讯作者:  顾春晗(1997—),男,硕士,主要从事低碳水泥固碳技术研究。    E-mail:  guch@mail.ustc.edu.cn
引用本文:    
顾春晗, 张涵, 宋谦石, 汪小憨.

基于神经网络-复合形算法的水泥窑协同热解固废硫、氮迁移预测 [J]. 水泥技术, 2025, 1(6): 9-17.
GU Chunhan, ZHANG Han, SONG Qianshi, WANG Xiaohan.

Prediction of Sulfur and Nitrogen Migration During the Collaborative Pyrolysis of Solid Waste in Cement Kilns Based on Neural Network-composite Algorithm . Cement Technology, 2025, 1(6): 9-17.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20256009  或          http://www.cemteck.com/CN/Y2025/V1/I6/9
[1] 卢小同, 毛丽娟, 栗博宇, 周晓刚.

水泥工厂数字化模型底层设计实践 [J]. 水泥技术, 2025, 1(6): 1-8.

[2] 邸贺敏, 贺朋, 王永刚.

水泥窑用低温烟气脱硝催化剂系列标准研制 [J]. 水泥技术, 2025, 1(6): 34-38.

[3] 袁志洲, 贺烽, 邓修宏.

2500t/d水泥熟料生产线低碳技术改造 [J]. 水泥技术, 2025, 1(6): 68-73.

[4] 隋明洁, 张江涛, 刘云庆.

以先进技术和装备推动水泥工业绿色发展 [J]. 水泥技术, 2025, 1(4): 1-11.

[5] 荣亚坤, 杨蕾, 邓荣娟, 王文清.

先进热工技术装备及其在万吨水泥生产线的应用 [J]. 水泥技术, 2024, 1(6): 31-35.

[6] 刘国华.

水泥生产装备智能在线监测交互平台的应用 [J]. 水泥技术, 2024, 1(6): 54-59.

[7] 曹勤, 刘帅明, 曾江波, 朱璟, 肖凤林.

低碱高硅率中抗硫酸盐水泥生产实践 [J]. 水泥技术, 2024, 1(4): 73-76.

[8] 贾坤鹏, 时耀辉, 于洪存, 杜会平, 赵兴娟.

X射线荧光分析仪检测数据超差原因分析及解决措施 [J]. 水泥技术, 2024, 1(4): 84-88.

No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview