振动监测,频谱分析,故障特征,预测性维护,智能诊断 ," /> 振动监测,频谱分析,故障特征,预测性维护,智能诊断 ,"/> vibration monitoring,spectrum analysis,fault characteristics,predictive maintenance,intelligent diagnosis ,"/> <p class="MsoNormal"> 基于振动监测的水泥生产设备故障诊断分析
Please wait a minute...
水泥技术, 2025, 1(6): 27-33    doi: 10.19698/j.cnki.1001-6171.20256027
  中材国际第三届水泥绿色智能发展大会专题—数字智能 本期目录 | 过刊浏览 | 高级检索 |

基于振动监测的水泥生产设备故障诊断分析

1 中材智能科技(成都)有限公司,四川  成都  611400

2 苏州中材建设有限公司,江苏  苏州  215300;

Cement Production Equipment Based on Vibration Monitoring Fault Diagnosis Analysis

1 Sinoma Intelligent Technology (Chengdu) Co., Ltd. , Chengdu Sichuan 611400, China;

2 Sinoma (Suzhou) Construction Co., Ltd. , Suzhou Jiangsu 215300, China

下载:  PDF (1320KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

本文针对水泥行业设备高温、高粉尘、重载的严苛工况,提出了基于振动监测与频谱分析的设备故障智能诊断技术,并系统梳理了水泥生产中多种关键设备预测性维护的典型案例,从故障现象、频谱特征、诊断结论及检修反馈四个维度展开了分析。实际案例表明,基于振动监测与频谱分析的设备故障智能诊断技术可提前识别轴承缺陷、对中不良、齿轮损伤等早期故障,后续研究可进一步结合深度学习算法优化故障特征提取精度,并拓展至设备剩余寿命预测领域,为水泥行业数字化转型提供更全面的技术支撑;同时,该方法论可推广至矿山机械、冶金设备等重工业领域,助力制造业高质量发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗晓锋
张林奎
关键词:  振动监测')" href="#">

振动监测  频谱分析  故障特征  预测性维护  智能诊断     

Abstract: 

This paper addresses the harsh operating conditions of high temperature, high dust, and heavy load in cement industry by proposing, an intelligent equipment fault diagnosis technology based on vibration monitoring and spectrum analysis. It systematically reviews typical cases of predictive,  maintenance for various key equipment in cement production analyzing them from four dimensions: fault phenomena, spectral characteristics, diagnostic conclusions, and maintenance feedback. Practical cases demonstrate that the intelligent diagnostic technology based on vibration monitoring and spectrum analysis can identify early faults such as bearing defects, misalignment, and gear damage in advance. Future research can further optimize fault feature extraction accuracy by combining deep learning algorithms and extend to the field of remaining useful life prediction for equipment, providing more comprehensive technical support for digital transformation of the cement industry. Furthermore, this methodology can be extended to heavy industries such as mining machinery and metallurgical equipment, facilitating high-quality development of the manufacturing industry.

Key words:  vibration monitoring')" href="#">

vibration monitoring    spectrum analysis    fault characteristics    predictive maintenance    intelligent diagnosis

收稿日期:  2025-04-01      修回日期:  2025-11-25           出版日期:  2025-11-25      发布日期:  2025-11-25      整期出版日期:  2025-11-25
ZTFLH:  TQ172.622  
通讯作者:  罗晓锋(1987—),男,硕士,工程师,主要从事水泥工厂智能生产运维系统的研究与交付实施。    E-mail:  1241506@qq.com
引用本文:    
罗晓锋, 张林奎.

基于振动监测的水泥生产设备故障诊断分析 [J]. 水泥技术, 2025, 1(6): 27-33.
LUO Xiaofeng, ZHANG Linkui.

Cement Production Equipment Based on Vibration Monitoring Fault Diagnosis Analysis . Cement Technology, 2025, 1(6): 27-33.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20256027  或          http://www.cemteck.com/CN/Y2025/V1/I6/27
[1] 许越. 设备管理及预测性维护系统在水泥工厂中的应用[J]. 水泥技术, 2022, 1(6): 29-35.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview