Please wait a minute...
水泥技术, 2020, 1(4): 87-89    doi: 10.19698/j.cnki.1001-6171.20204087
  余热发电 本期目录 | 过刊浏览 | 高级检索 |
低温余热发电凝汽式汽轮机真空系统改造
山东山铝环境新材料有限公司
Vacuum System Renovation of Condensing Turbine in Low-temperature Cogeneration
Shandong Shanlv Environment New Material Co., Ltd.
下载:  PDF (1560KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 对原真空泵机组与气冷罗茨水循环系统的优缺点进行了对比,采用气冷罗茨水循环真空机组对原为凝汽器、除氧器抽真空的射水抽气器系统进行了技改。改造后,在相同运行工况条件下,抽气效率提高,真空度提高了2.6kPa,发电量提升了520kW,经济效益显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范文礼
杨海林
关键词:  气冷罗茨水循环  凝汽器  除氧器  抽气效率    
Abstract: Through comparing advantages and shortcomings between the original vacuum system and the air-cooled roots adding water-ring vacuum pump system, it aims to renovate condenser and water jet ejector system of deaerator by using the air-cooled roots adding water-ring vacuum pump system. Results show that air pumping efficiency has been improved and the vacuum degree has increased by 2.6kPa under the same industrial situation. Moreover, the generating capacity has rose by 520kW with significant economic benefits.
Key words:  the air-cooled roots adding water-ring vacuum pump system    condenser    deaerator    pumping efficiency
收稿日期:  2019-11-19                出版日期:  2020-07-25      发布日期:  2020-07-27      整期出版日期:  2020-07-25
ZTFLH:  TQ172.622.22  
引用本文:    
范文礼, 杨海林.
低温余热发电凝汽式汽轮机真空系统改造
[J]. 水泥技术, 2020, 1(4): 87-89.
FAN Wenli, YANG Hailin. Vacuum System Renovation of Condensing Turbine in Low-temperature Cogeneration. Cement Technology, 2020, 1(4): 87-89.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20204087  或          http://www.cemteck.com/CN/Y2020/V1/I4/87
[1] 李大庆.
水泥厂余热电站发电机中性点接地方式的研究
[J]. 水泥技术, 2020, 1(4): 82-86.
[2] 马哲.
实现余热电站负荷自动调整的简易方法
[J]. 水泥技术, 2020, 1(3): 64-66.
[3] 陈宝阔, 贺伯君, 楼剑.
余热电站能源数据管理系统简介
[J]. 水泥技术, 2020, 1(3): 67-69.
[4] 王权, 秦学恒. 水泥熟料生产线余热发电废水零排放综合利用实例[J]. 水泥技术, 2020, 1(1): 88-90.
[5] 赵娴, 陈宝阔.
新型清灰装置在硅业余热发电中的应用
[J]. 水泥技术, 2020, 1(1): 91-93.
[6] 曾海裕.
油环真空装置的组成及操作要点
[J]. 水泥技术, 2019, 1(5): 97-98.
[7] 王建峰.
余热电站汽轮发电机组轴振大的处理
[J]. 水泥技术, 2019, 1(4): 61-65.
[8] 王海涛, 贾津秋. 余热发电热力系统不平衡原因及管理与维护[J]. 水泥技术, 2019, 1(4): 66-68.
[9] 武猛.
水泥工厂余热电站站用电率计算方法分析
[J]. 水泥技术, 2019, 1(3): 77-80.
[10] 江向东, 王晓建.
空冷汽轮机机组振动大的原因分析
[J]. 水泥技术, 2019, 1(2): 83-86.
[11] 杨胜昆.
膨胀节补偿及支架脱空失效的原因分析
[J]. 水泥技术, 2019, 1(1): 99-102.
[12] 周庆忠, 田雷.
ETAP软件在余热电站谐波计算中的应用
[J]. 水泥技术, 2018, 1(6): 84-88.
[13] 史明磊. 水泥窑余热发电锅炉管束腐蚀损坏案例分析及改造[J]. 水泥技术, 2018, 1(6): 89-92.
[14] 汪佳杰.
三次风锅炉在水泥窑余热电站的应用
[J]. 水泥技术, 2018, 1(4): 94-96.
[15] 李明君. 新型连续排污扩容器[J]. 水泥技术, 2018, 1(4): 97-99.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview