Please wait a minute...
水泥技术, 2020, 1(4): 96-100    doi: 10.19698/j.cnki.1001-6171.20204096
  耐火材料 本期目录 | 过刊浏览 | 高级检索 |
预热器C5旋风筒耐火材料脱落的原因分析
中材建设有限公司
Analysis on Collapsed Refractory in the C5 Cyclone of Preheaters
CBMI Construction Co., Ltd.
下载:  PDF (4139KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在生产运营阶段,预热器旋风筒顶部耐火材料有块状脱落,造成下料管堵塞。现场观察,部分锚固件与耐火材料结合位置有严重腐蚀。针对这一现象,对锚固件失效、耐火材料施工中的质量控制、工艺设计和生产操作等影响因素进行了分析研究。结果显示,使用环境中含量较高的氯元素对锚固件产生了严重的高温腐蚀,良好的施工质量有助于隔断氯元素与锚固件表面的接触。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿锋涛
关键词:  旋风筒耐火材料  锚固件  高温腐蚀    
Abstract: During the production and operation, the discharge pipe was blocked by the collapsed refractory from the top of preheater C5 cyclone. On-site observation revealed that there was serious anchor corrosion in the integrated area with refractory materials. Research analysis was conducted on anchor corrosion, quality control during refractory material construction, process design and production operation, and it turned out that serious high temperature corrosion on anchor was caused by high chlorine in its environment and high construction quality would help isolate chlorine from the anchors as well.
Key words:  cyclone refractory    anchor    high temperature corrosion
收稿日期:  2020-05-07                出版日期:  2020-07-25      发布日期:  2020-07-27      整期出版日期:  2020-07-25
ZTFLH:  TQ172.622.9  
引用本文:    
耿锋涛.
预热器C5旋风筒耐火材料脱落的原因分析
[J]. 水泥技术, 2020, 1(4): 96-100.
GENG Fengtao. Analysis on Collapsed Refractory in the C5 Cyclone of Preheaters. Cement Technology, 2020, 1(4): 96-100.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20204096  或          http://www.cemteck.com/CN/Y2020/V1/I4/96
[1] 李晓波, 钱伟.
25-20耐热钢的性能测试及在水泥烧成系统中的应用
[J]. 水泥技术, 2019, 1(1): 34-37.
[2] 刘旭, 孙建, 邓荣娟, 向东湖. 一种针对高温腐蚀工况的新型耐热钢的研究[J]. 水泥技术, 2017, 1(3): 27-29.
[3] 李亮, 刘旭, 郑国江, 陈廷伟. 耐热不锈钢在高温Cl环境中的腐蚀研究[J]. 水泥技术, 2014, 1(2): 43-46.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview