Please wait a minute...
水泥技术, 2023, 1(1): 89-96    doi: 10.19698/j.cnki.1001-6171.20231089
  实验研究 本期目录 | 过刊浏览 | 高级检索 |
碱激发胶凝材料混凝土耐久性研究
1 重庆大学 材料科学与工程学院; 2 东南大学 材料科学与工程学院
Study on Durability of Alkali-Activated Cementitious Material Concrete
1. Faculty of Materials Science and Engineering, Chongqing University ; 2. Faculty of Materials Science and Engineering, Southeast University
下载:  PDF (6499KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发胶凝材料是一种节能环保建筑材料,其生产原材料来源广泛,耐久性存在较多不确定性。综述了碱激发胶凝材料在硫酸盐侵蚀、酸腐蚀、碳化及氯离子渗透条件下的耐久性研究成果,碱激发胶凝材料比普通硅酸盐水泥有更好的耐久性,原材料中的一些次要成分(如氧化镁)可能对碱激发胶凝材料的耐久性有一定的影响,通过细化碱激发胶凝材料孔隙结构和提高碱激发胶凝材料的密度,可以提高碱激发胶凝材料的抗腐蚀能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李特
李琦
关键词:  碱激发胶凝材料  耐久性  微观机理  微观分析    
Abstract: Alkali-activated cementitious material is an energy-saving and environmentally friendly building material. Its raw materials are widely sourced and its durability is uncertain. The research results on the durability of alkali-activated cementitious materials under sulfate attack, acid corrosion, carbonization and chloride ion penetration are reviewed. Alkali-activated cementitious materials have better durability than ordinary Portland cement. Some secondary components in raw materials (such as magnesium oxide) may have unknown effects on the durability of alkali-activated cementitious materials. The corrosion resistance of alkali-activated cementitious materials can be improved by refining the pore structure of alkali-activated cementitious materials and increasing the density of alkali-activated cementitious materials.
Key words:  alkali-activated cementitious materials    durability    microscopic mechanism    microscopic analysis
收稿日期:  2022-04-25                出版日期:  2023-01-25      发布日期:  2023-01-19      整期出版日期:  2023-01-25
ZTFLH:  TU258  
引用本文:    
李特, 李琦. 碱激发胶凝材料混凝土耐久性研究[J]. 水泥技术, 2023, 1(1): 89-96.
LI Te, LI Qi. Study on Durability of Alkali-Activated Cementitious Material Concrete. Cement Technology, 2023, 1(1): 89-96.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20231089  或          http://www.cemteck.com/CN/Y2023/V1/I1/89
[1] 姚丕强, 韩辉, 俞为民. 新型低钙水泥的煅烧及初步应用研究[J]. 水泥技术, 2018, 1(2): 17-25.
[2] 宋留庆, 王峰, 聂文海, 柴星腾, 朱锋. 辊磨粉磨镍铁渣粉用作混凝土掺合料的性能研究[J]. 水泥技术, 2016, 1(2): 28-30.
[3] 郭晓潞, 施惠生, 董文靖. 纳米改性CFA-MSWI复合地聚合物的耐久性[J]. 水泥技术, 2014, 1(2): 30-34.
[4] 郭晓潞, 施惠生, .
MSWI飞灰制阿利尼特复合水泥基材料的耐久性
[J]. 水泥技术, 2013, 1(3): 29-32.
[5] 施惠生、, 李东锋, 吴凯, 郭晓潞、. 钢渣对水泥混凝土性能影响的研究进展[J]. 水泥技术, 2011, 1(5): 29-34.
[6] 张国辉, 陈亚明, 付兴华. 改善普通水泥耐久性的研究[J]. 水泥技术, 2003, 1(4): 41-43.
[7] 安 来. 关于高性能混凝土的研讨[J]. 水泥技术, 2001, 1(3): 3-8.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview