Please wait a minute...
水泥技术, 2020, 1(6): 27-29    doi: 10.19698/j.cnki.1001-6171.20206027
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
沸腾干燥窑氮氧化物减排技术发展现状
天津水泥工业设计研究院有限公司
Development Status of NOx Emission Reduction Technology for Kilns with Fluidized Bed Furnace
Tianjin Cement Industry Design & Research Institute Co., Ltd.
下载:  PDF (1362KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了3家水泥厂沸腾干燥窑的氮氧化物排放浓度检测情况,检测结果均超过排放标准;探讨了目前适用于沸腾干燥窑降低氮氧化物排放的SNCR、SCR等主要技术;阐述了改进沸腾干燥窑的结构与SNCR技术配合使用将是未来降低沸腾干燥窑氮氧化物排放浓度的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐新宇
关键词:  沸腾干燥窑  氮氧化物  减排技术    
Abstract: The measurements of NOx emission concentration in three cement plants with fluidized bed are introduced, which shows that NOx emission of all the three kilns exceed standard. SNCR and SCR are regarded suitable for reducing NOx emission of fluidized bed kiln. The future development direction is to modification the structure of fluidized bed furnace coupling with SNCR technology.
Key words:  fluidized bed furnace    nitrogen oxides    emission reduction technology
收稿日期:  2020-03-29                出版日期:  2020-11-25      发布日期:  2020-12-07      整期出版日期:  2020-11-25
ZTFLH:  TQ172.622.29  
引用本文:    
唐新宇.
沸腾干燥窑氮氧化物减排技术发展现状
[J]. 水泥技术, 2020, 1(6): 27-29.
TANG Xinyu.
Development Status of NOx Emission Reduction Technology for Kilns with Fluidized Bed Furnace
. Cement Technology, 2020, 1(6): 27-29.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20206027  或          http://www.cemteck.com/CN/Y2020/V1/I6/27
[1] 张滨, 郎济涵.
SNCR脱硝系统技术改造实践
[J]. 水泥技术, 2020, 1(6): 23-26.
[2] 赵丹辉.
浅析水泥行业氮氧化物控制技术
[J]. 水泥技术, 2020, 1(5): 24-27.
[3] 赵琳, 刘庆岭, 胡芝娟, 王永刚, 程兆环.
提高Mn系低温脱硝催化剂抗硫抗水性能的国内外研究概述
[J]. 水泥技术, 2020, 1(2): 66-72.
[4] 唐多久, 汪涛.
自适应SNCR技术在水泥厂实现氮氧化物超低排放
[J]. 水泥技术, 2019, 1(4): 69-73.
[5] 李宁, 赵亮.
回转窑燃烧器降低氮氧化物机理分析
[J]. 水泥技术, 2016, 1(6): 40-42.
[6] 尹国明.
水泥企业氮氧化物减排的两种技术措施及实践
[J]. 水泥技术, 2016, 1(4): 76-77.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[5] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[6] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[7] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[8] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
[9] ZHANG Jiangtao, LIU Baoliang. Processing of the Wet Materials of the Winter Cement Factory in the High Cold Region[J]. Cement Technology, 2018, 1(1): 74 -82 .
[10] WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure[J]. Cement Technology, 2018, 1(1): 83 -88 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview