Please wait a minute...
水泥技术, 2022, 1(4): 79-82    doi: 10.19698/j.cnki.1001-6171.20224079
  生产技术 本期目录 | 过刊浏览 | 高级检索 |
电石渣水泥熟料生产线结皮原因分析及处理
陕西北元集团水泥有限公司,陕西  神木  719000
Cause Analysis and Treatment of Calcium Carbide Slag Cement ClinkerProduction Line Skinning
Shaanxi Beiyuan Group Cement Co., Ltd. , Shenmu Shaanxi 719000, China
下载:  PDF (3969KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 电石渣作原料生产水泥,因电石渣氯离子有害成分含量及硫碱比远高于用石灰石作原料的水泥生产线,预热器、分解炉系统结皮一直是影响回转窑稳定运行的重大工艺问题。通过采用硫酸清净工艺代替盐酸清净工艺,降低了原料中的氯离子含量和硫碱比;通过控制煤粉燃烧,避免了分解炉局部高温;通过采取在烟室、分解炉缩口使用微晶板等措施后,系统结皮减少了60%以上,实现了系统的高效稳定运行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹辉辉
关键词:  熟料煅烧  电石渣  有害成分  结皮    
Abstract: 
Carbide slag is used as raw material to produce cement. Because the content of harmful components of chloride ions and sulfur-alkali ratio of calcium carbide slag are much higher than those of limestone cement production line, the crusting of preheater and precalciner system has always been a major technological problem affecting the stable operation of rotary kiln. By adopting the sulfuric acid cleaning process instead of the hydrochloric acid cleaning process, the chloride ion content and the sulfur-alkali ratio in the raw materials are reduced; by controlling the combustion of pulverized coal, the local high temperature of the precalciner is avoided. After such measures, the skinning of the system has been reduced by more than 60%, realizing the efficient and stable operation of the system.
Key words:  clinker calcination    carbide slag    harmful components    skinning
收稿日期:  2021-11-13      修回日期:  2022-07-25           出版日期:  2022-07-25      发布日期:  2022-07-25      整期出版日期:  2022-07-25
ZTFLH:  TQ172.44   
     
引用本文:    
曹辉辉. 电石渣水泥熟料生产线结皮原因分析及处理[J]. 水泥技术, 2022, 1(4): 79-82.
CAO Huihui. Cause Analysis and Treatment of Calcium Carbide Slag Cement ClinkerProduction Line Skinning. Cement Technology, 2022, 1(4): 79-82.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20224079  或          http://www.cemteck.com/CN/Y2022/V1/I4/79
[1] 曹辉辉. 电石渣配料生产线回转窑结圈分析与处理[J]. 水泥技术, 2022, 1(1): 79-82.
[2] 司家清, 熊少华, 唐述冬. 电石渣转子秤的改造[J]. 水泥技术, 2020, 1(6): 95-96.
[3] 何胜平, 孙国玉. 电石渣制水泥的烧成技术研究与实践[J]. 水泥技术, 2018, 1(2): 91-93.
[4] 林发尧. 采用电石渣配料降低烟气硫排放[J]. 水泥技术, 2017, 1(4): 78-81.
[5] 吴东业. 水泥厂电石渣圆库安全设施设计的探讨[J]. 水泥技术, 2017, 1(4): 31-35.
[6] 轩新军.
电石渣生产水泥工艺危爆环境的电气设计
[J]. 水泥技术, 2012, 1(2): 89-91.
[7] 陶亚刚, 王鹏, 黄宁, 胡纫兰.
EDXRF在分析电石渣水泥生料成分中降低基体效应影响的研究
[J]. 水泥技术, 2009, 1(2): 30-31.
[8] 唐根华, 肖其中, 卫 耕.
掺入电石渣的生料制备系统的研究与应用
[J]. 水泥技术, 2007, 1(2): 43-45.
[9] 刘惠银.
渣浆代水成球工艺在机立窑上的应用
[J]. 水泥技术, 2002, 1(5): 100-103.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview