Please wait a minute...
水泥技术, 2023, 1(1): 43-50    doi: 10.19698/j.cnki.1001-6171.20231043
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
高炉煤气燃烧数值模拟在LOMA-MLB热风炉调试中的应用
莱歇研磨机械制造(上海)有限公司
Application of Numerical Simulation of Blast Furnace Gas Combustion in Commissioning of LOMA-MLB Hot Blast Furnace
Loesche (Shanghai) Co., Ltd.
下载:  PDF (6828KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 LOMA-MLB热风炉为适用于高炉煤气的炉型,通过计算机建模和网格划分,使用Fluent软件数值模拟高炉煤气在热风炉中的燃烧情况,验证热风炉调试时配风所需的空燃比及烟气温度参考值。模拟结果表明,燃烧反应质量传递过程基本完成,实验数据比模拟数据计算的热值稍高,模拟燃烧燃尽率高,燃烧火焰中心最高温度为1 595K,出口处NOX含量仅为
0.008 6ppm,高炉煤气钝体的设计有利于燃料与空气的混合和保持火焰的连续稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李刚健
关键词:  热风炉  高炉煤气  数值模拟  空燃比    
Abstract: LOMA-MLB hot gas generator is suitable for blast furnace gas. Through computer modeling and mesh division, the combustion of blast furnace gas in the hot gas generator is numerically simulated by using Fluent software to verify the air-fuel ratio and flue gas temperature reference value required for air distribution during hot gas generator commissioning. The simulation results show that the combustion reaction mass transfer process is basically completed, the experimental data is slightly higher than the heat value calculated by the simulation data, and the simulated combustion burnout rate is high. The maximum temperature of the combustion flame center is 1 595K, and the NOx content at the outlet is only 0.008 6ppm. The design of the bluff body of the gas burner is conducive to the mixing of fuel and air and the continuous stability of the flame.
Key words:  hot gas generator    blast furnace gas    CFD simulation    air-fuel ratio
收稿日期:  2022-04-25                出版日期:  2023-01-25      发布日期:  2023-01-19      整期出版日期:  2023-01-25
ZTFLH:  TQ172.63  
引用本文:    
李刚健. 高炉煤气燃烧数值模拟在LOMA-MLB热风炉调试中的应用[J]. 水泥技术, 2023, 1(1): 43-50.
LI Gangjian. Application of Numerical Simulation of Blast Furnace Gas Combustion in Commissioning of LOMA-MLB Hot Blast Furnace. Cement Technology, 2023, 1(1): 43-50.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20231043  或          http://www.cemteck.com/CN/Y2023/V1/I1/43
[1] 杜佳佳. 旋流器和喷嘴对燃烧器性能影响的数值模拟研究[J]. 水泥技术, 2022, 1(1): 27-34.
[2] 豆海建, 秦中华, 王维莉, 柴星腾, 于涛, 赵剑波. 一种U型动叶片选粉机的研究及应用[J]. 水泥技术, 2018, 1(6): 34-39.
[3] 刘秀君, 叶华君. 数值模拟在盘体工艺优化中的应用[J]. 水泥技术, 2017, 1(1): 39-42.
[4] 豆海建, 曾荣, 唐清华, 柴星腾, 聂文海, 申占民. 选粉机三维动态流场数值研究[J]. 水泥技术, 2013, 1(4): 31-34.
[5] 申金永, 姚秀丽, 刘世民. 3300 t/d回转窑稳态热分析及优化[J]. 水泥技术, 2011, 1(1): 36-40.
[6] 姜丰达, 张志宇.
分解炉改烧高炉煤气的可行性研究
[J]. 水泥技术, 2008, 1(4): 33-34.
[7] 华建社, 张成元, 徐德龙, 袁启奇.
立式熟料冷却机内气体流动规律及其影响因素
[J]. 水泥技术, 2008, 1(3): 22-27.
[8] 黄 来, 陆继东, 胡芝娟, 吴君棋, 陶从喜, 彭学平.
旋喷结合分解炉内流场在不同结构和入口条件下的数值模拟
[J]. 水泥技术, 2002, 1(6): 5-8.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview