Please wait a minute...
水泥技术, 2024, 1(2): 13-18    doi: 10.19698/j.cnki.1001-6171.20242013
  装备技术 本期目录 | 过刊浏览 | 高级检索 |

TRMK5041水泥立磨粉磨系统优化升级

1 喀什天山水泥有限责任公司,新疆  喀什  844000;
2 中材(天津)粉体技术装备有限公司,天津  300400;
3 天津水泥工业设计研究院有限公司,天津  300400;
Upgrading and Renovation of TRMK5041 Cement Vertical Mill Grinding System

1. Kashgar Tianshan Cement Co., Ltd. , Kashgar Xinjiang 844000, China;

2. Sinoma (Tianjin) Powder Technology Equipment Co., Ltd. , Tianjin 300400, China; 3. Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China 

下载:  PDF (43106KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
新疆某水泥厂国产TRMK5041水泥立磨粉磨系统存在稳定性差、运行压力低、阻力分布不合理、粉磨效率低等问题。通过采取改进研磨区结构、加宽有效研磨区,增大液压系统油缸型号、增加磨辊投影压力,应用低阻风环、优化导风环结构,局部改造循环风管、减少风管弯头,应用分级粉磨技术等措施,有效提高了磨机稳定性和研磨效率,达到了增产降耗的目的。改造后,在相同水泥混合材配比和成品细度情况下,TRMK5041水泥立磨提产10%以上,粉磨系统电耗下降4.0kW?h/t,改造效果显著;项目改造周期短,施工周期仅为25d,投资回报率高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安卫军
银建军
滑松
刘迪
彭凌云
关键词:  水泥立磨  新型研磨区  低阻风环  分级粉磨  节能降耗    
Abstract: 
Before modification, domestic cement vertical roller mill TRMK5041 grinding system had issues of bad stability, low operation pressure, uneven distribution for resistance and low grinding efficiency. By improving the structure of the grinding area, widening the effective grinding area, increasing the hydraulic system cylinder size, adding grinding roller projection pressure, using low-resistance louver ring and optimizing the structure, locally modifying the circulating gas duct, reducing gas duct elbows, and applying classified grinding technology, the stability and grinding efficiency of the mill were effectively improved, achieving the goal of increased productivity and reduced consumption. After the modification, under the same conditions of cement composition and product fineness, the TRMK5041 cement vertical mill increased output by more than 10%, and the system's power consumption decreased by 4.0 kW?h/t, demonstrating significant improvement. The project had a short modification period, with a construction period of only 25 days and a high return on investment.

Key words:  vertical mill    new grinding area    low resistance wind ring    graded grinding    energy saving
收稿日期:  2023-11-21                出版日期:  2024-03-25      发布日期:  2024-03-25      整期出版日期:  2024-03-25
ZTFLH:  TQ172.632  
引用本文:    
安卫军, 银建军, 滑松, 刘迪, 彭凌云.

TRMK5041水泥立磨粉磨系统优化升级 [J]. 水泥技术, 2024, 1(2): 13-18.
AN Weijun, YIN Jianjun, HUA Song, LIU Di, PENG Lingyun.

Upgrading and Renovation of TRMK5041 Cement Vertical Mill Grinding System
. Cement Technology, 2024, 1(2): 13-18.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20242013  或          http://www.cemteck.com/CN/Y2024/V1/I2/13
[1] 荣亚坤, 李华军, 董天明, 孙文东, 石国平.

国际化发展进程中辊压机控制系统的优化 [J]. 水泥技术, 2024, 1(3): 9-15.

[2] 王国民.

大型管磨机驱动装置的选择及优缺点分析 [J]. 水泥技术, 2024, 1(3): 20-26.

[3] 郭丹阳, 李建会, 武玉涛.

HRM3400B生料立磨的节能改造 [J]. 水泥技术, 2024, 1(3): 27-31.

[4] 赵华, 张闯, 马纯辉, 李志丹, 臧剑波. 水泥回转窑一键升温系统的开发与应用[J]. 水泥技术, 2024, 1(2): 28-33.
[5] 张亮, 魏红旗. 水泥粉磨系统的节能降耗实践[J]. 水泥技术, 2024, 1(2): 62-66.
[6] 马顺龙, 赵阳. 提高辊压机做功能力的影响因素分析[J]. 水泥技术, 2024, 1(1): 34-38.
[7] 张闯, 魏灿, 禹敏, 赵华, 马纯辉.

水泥粉磨系统智能化建设新方案 [J]. 水泥技术, 2023, 1(6): 23-28.

[8] 柳学忠, 周卫兵, 徐保国, 朱教群, 许元正.

水泥半终粉磨系统生产工艺优化改造 [J]. 水泥技术, 2023, 1(6): 41-46.

[9] 兰东, 吴明献, 邹波.

ϕ4.2m×13m水泥滑履磨筒体磨损穿孔修复 [J]. 水泥技术, 2023, 1(6): 68-71.

[10] 石国平, 刘栋强. 水泥粉磨系统智能化发展现状及优化途径[J]. 水泥技术, 2023, 1(5): 13-17.
[11] 鞠召会, 张良宏, 邵青, 杨春, 侯国锋. 4 500t/d水泥熟料生产线原料粉磨系统改造方案设计与实践[J]. 水泥技术, 2023, 1(5): 18-23.
[12] 徐文强, 卢琼琼, 曹昊. 生料辊压机终粉磨系统问题分析与优化方案[J]. 水泥技术, 2023, 1(5): 24-28.
[13] 许广. 生料辊压机粉磨系统设计使用几点注意事项[J]. 水泥技术, 2023, 1(5): 29-32.
[14] 彭凌云, 董苑, 刘栋强. 国产水泥立式辊磨研磨区提产降耗改造[J]. 水泥技术, 2023, 1(4): 43-46.
[15] 刘迪, 杜鑫, 武晓, 刘畅. 立式辊磨煤粉制备系统节能降耗改造[J]. 水泥技术, 2023, 1(3): 50-55.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview