Please wait a minute...
水泥技术, 2025, 1(4): 29-34    doi: 10.19698/j.cnki.1001-6171.20254029
  中材国际第三届水泥绿色智能发展大会专题—绿色低碳 本期目录 | 过刊浏览 | 高级检索 |

磷石膏矿化CO2制备纳米CaCO3的中试试验研究

1 中国建材装备集团有限公司合肥水泥研究设计院有限公司,安徽  合肥  230051

2 合肥中亚环保科技有限公司,安徽  合肥  230051;

3 合肥工业大学,安徽  合肥  230009;

Study on Pilot-scale Experiment for Preparation of Nano-CaCO3

1 CNBM Equipment Group, Hefei Cement Research & Design Institute Co., Ltd. , Hefei Anhui 230051, China;

2 Hefei Zhongya Environmental Protection Technology Co., Ltd. , Hefei Anhui 230051, China;

3 Hefei University of Technology, Hefei Anhui 230009, China 

下载:  PDF (6280KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

用“相转移-沉淀法”,开展了以工业固废磷石膏、CO2为原料制备纳米CaCO3的中试试验研究工作。通过对原料磷石膏进行XRF、XRD测试和SEM分析表征,确定磷石膏成分及含量,并以此为计算基准开展后续试验。通过开展中试试验,考察相转移反应、陈化分离反应、碳化沉淀反应、改性反应等系列工序条件在中试规模下的适应性和匹配性试验。结果显示,相转移反应和陈化分离反应的Ca2+转化率均达到90%,碳化沉淀反应的Ca2+转化率达到95%,表明小试优化工艺条件具有较好的中试适应性。中试规模下所制备的活性纳米CaCO3样品为纯相方解石型CaCO3,样品的平均粒径约36nm,分散性好且粒度较为均匀,且其主要性能指标符合或优于国家标准中的塑料用纳米CaCO3(I型)样品性能指标要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂新悦
王梦瑜
王百年
杨保俊
关键词:  磷石膏  CO2转化  活性纳米CaCO3  中试试验  相转移-沉淀法    
Abstract: 

The "phase transfer-precipitation method" was adopted to conduct a pilot-scale experimental research on preparing nano-CaCO3 using industrial solid waste phosphogypsum and CO2 as raw materials. Through XRF, XRD tests, and SEM analysis characterization of the raw material phosphogypsum, its composition and content were determined, serving as the baseline for subsequent experiments. The pilot experiments investigated the adaptability and compatibility of key process conditions - including phase-transfer reaction, aging-separation reaction, carbonation precipitation reaction, and modification reaction - at a pilot scale. The results demonstrated that the Ca2+ conversion rates reached 90% for both phase-transfer and aging-separation reactions, and 95% for the carbonation precipitation reaction, indicating strong scalability of the optimized laboratory-scale conditions to pilot operations. The active nano-CaCO3 produced at the pilot scale exhibited a pure calcite phase, with an average particle size of ~36nm, good dispersibility, and relatively uniform particle size distribution. The product’s key performance metrics either met or exceeded the specifications for plastic-grade nano-CaCO3 (Type I) stipulated in the Chinese national standard.

Key words:  phosphogypsum    CO2 conversion    active nano-CaCO3    pilot-scale experiment    phase transfer-precipitation method
收稿日期:  2025-04-17      修回日期:  2025-07-25           出版日期:  2025-07-25      发布日期:  2025-07-25      整期出版日期:  2025-07-25
ZTFLH:  TQ132.32   
   
基金资助: 

安徽省科技重大专项(202203a05020030

作者简介:  涂新悦(1999— ),女,硕士,助理工程师,主要从事固废-CO2协同转化技术及材料的研究。E-mail:txy@hcrdi.com
引用本文:    
涂新悦, 王梦瑜, 王百年, 杨保俊.

磷石膏矿化CO2制备纳米CaCO3的中试试验研究 [J]. 水泥技术, 2025, 1(4): 29-34.
TU Xinyue, WANG Mengyu, WANG Bainian, YANG Baojun.

Study on Pilot-scale Experiment for Preparation of Nano-CaCO3 . Cement Technology, 2025, 1(4): 29-34.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20254029  或          http://www.cemteck.com/CN/Y2025/V1/I4/29
[1] 钱海运, 曹凌杨, 张莎莎, 王亚.

改性球状磷石膏在水泥生产中的应用 [J]. 水泥技术, 2025, 1(2): 76-80.

[2] 谢恩鑫, 苏宏东, 邓辉. 改性磷石膏在普通硅酸盐水泥中的应用[J]. 水泥技术, 2023, 1(2): 93-.
[3] 王俊杰, 方炎章. 磷石膏生产建筑石膏粉的双温联控煅烧工艺与应用[J]. 水泥技术, 2018, 1(4): 100-103.
[4] 刘晨, 郑旭, 王昕, 杜勇, 颜碧兰, 林宗寿, 魏丽颖. 过硫磷石膏矿渣水泥浆SO3溶出性能研究[J]. 水泥技术, 2017, 1(4): 36-43.
[5] 何玉鑫, 瞿县.
磷石膏基胶凝材料复合特种化纤的性能研究
[J]. 水泥技术, 2014, 1(1): 29-32.
[6] 何玉鑫, 万建东, 刘小全, 华苏东.
纤维改性磷石膏基胶凝材料及阻裂作用机理分析
[J]. 水泥技术, 2013, 1(5): 23-26.
[7] 陆占清, 夏举佩, 张召述, 朱丽苹.
低温陶瓷改性磷石膏生产建筑砖的工艺研究
[J]. 水泥技术, 2011, 1(3): 34-37.
[8] 陶文宏, 付兴华, 孙凤金, 杨中喜.
改性磷石膏对复合水泥性能及水化机理影响的研究
[J]. 水泥技术, 2007, 1(4): 27-31.
[9] 孙创奇, 吴清仁, 陈光, 李清涛, 谢代义.
磷石膏的复合矿化作用及其对硅酸盐水泥生料煅烧的影响
[J]. 水泥技术, 2007, 1(2): 24-28.
[10] 关恒毅, 柳良田, 李健生, 范慧琳.
磷石膏部分代替二水石膏的试验及应用
[J]. 水泥技术, 2006, 1(1): 91-93.
[11] 张学丽, 韩利华, 乔立红.
静电除尘器在磷石膏制硫酸联产水泥工程中的应用
[J]. 水泥技术, 2005, 1(6): 63-65.
[12] 崔素萍, 顾雪慈, 王子明, 兰明章, 贾宝生. 石膏种类对硅酸盐水泥性能的影响[J]. 水泥技术, 2005, 1(2): 29-32.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview