Please wait a minute...
水泥技术, 2025, 1(4): 35-43    doi: 10.19698/j.cnki.1001-6171.20254035
  中材国际第三届水泥绿色智能发展大会专题—绿色低碳 本期目录 | 过刊浏览 | 高级检索 |

生物干化技术赋能水泥窑协同处置市政污泥

中国建材装备集团有限公司合肥水泥研究设计院有限公司,安徽  合肥  230051;

Biodrying Technology Enhancing Municipal Sludge Co-processing in Cement Kilns

CNBM Equipment Group, Hefei Cement Research & Design Institute Co., Ltd. , Hefei Anhui 230051, China

下载:  PDF (1294KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

随着城镇化进程加快,市政污泥产量激增,而传统热干化处置技术因高能耗、高成本,推广应用受限。生物干化技术利用微生物代谢产热蒸发水分,具有能耗低、成本低和环境友好等优势,符合双碳目标。本文综述了生物干化技术的研究进展,分析了温度、微生物、湿度、调理剂、通风与翻堆等关键因素对干化效率的影响,并探讨了水泥窑协同处置生物干化污泥的应用前景。研究表明,维持高温(>60℃)、优化菌剂配比、控制初始湿度(55%~65%)及合理通风策略可显著提升干化效率。国内外工程案例证实,生物干化技术能有效实现污泥减量化与资源化,结合水泥窑协同处置可进一步降低碳排放,经济效益显著。未来研究应聚焦微生物有机质利用效率的提升及模型优化,以推动技术广泛应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志坚
黄婷
关键词:  生物干化  市政污泥  微生物代谢  水泥窑协同处置  资源化利用    
Abstract: 

With the acceleration of urbanization, the production of municipal sludge has surged. Traditional thermal drying disposal technologies face limitations in widespread application due to their high energy consumption and cost. Biodrying technology, which utilizes microbial metabolic heat to evaporate moisture, offers advantages such as low energy consumption, low cost, and environmental friendliness, aligning with the goals of carbon peaking and carbon neutrality. This paper reviews the research progress in biodrying technology, analyzes the impact of key factors—including temperature, microorganisms, moisture content, conditioning agents, aeration, and turning—on drying efficiency, and explores the application prospects of co-processing biodried sludge in cement kilns. Research indicates that maintaining high temperatures >60), optimizing the ratio of microbial inoculants, controlling initial moisture content (55%~65%), and implementing reasonable aeration strategies can significantly enhance drying efficiency. Domestic and international engineering cases confirm that biodrying technology can effectively achieve sludge reduction and resource utilization. Its integration with cement kiln co-processing can further reduce carbon emissions and yield significant economic benefits. Future research should focus on improving the efficiency of microbial organic matter utilization and optimizing models to promote wider application of the technology.

Key words:  biological drying    municipal sludge    microbial metabolism    cement kiln co-processing    resource recovery
收稿日期:  2025-04-19      修回日期:  2025-07-25           出版日期:  2025-07-25      发布日期:  2025-07-25      整期出版日期:  2025-07-25
ZTFLH:  TQ172.625  
基金资助: 

国家重点研发计划(2020YFC1908703); 安徽省重点研究与开发计划(2023t07020003

作者简介:  李志坚(1996—),男,硕士,工程师,主要从事固废资源化研究。E-mail:lzj@hcrdi.com
引用本文:    
李志坚, 黄婷.

生物干化技术赋能水泥窑协同处置市政污泥 [J]. 水泥技术, 2025, 1(4): 35-43.
LI Zhijian, HUANG Ting. Biodrying Technology Enhancing Municipal Sludge Co-processing in Cement Kilns. Cement Technology, 2025, 1(4): 35-43.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20254035  或          http://www.cemteck.com/CN/Y2025/V1/I4/35
[1] 谢志英. 水泥窑协同处置危险废物消防系统的探讨[J]. 水泥技术, 2025, 1(4): 71-75.
[2] 蔡晓亮. TRMGP34.2外循环钢渣立磨的开发与应用[J]. 水泥技术, 2025, 1(3): 22-27.
[3] 赵琳, 赵亮, 王佳硕, 杨欢迎. 浅谈碳酸盐分解耦合CO2原位还原技术国内外研究进展[J]. 水泥技术, 2025, 1(3): 2-10.
[4] 冯云, 李榛, 赵峰, 张文涛, 闫可可. 降低水泥水溶性铬(Ⅵ)方法研究综述[J]. 水泥技术, 2024, 1(1): 78-82.
[5] 赵利卿, 彭小平, 黄庆, 马东光, 惠家状. 我国危险废物处置政策与技术现状探讨[J]. 水泥技术, 2023, 1(4): 13-18.
[6] 冯云, 李榛, 张文涛, 李佳, 赵峰. 含氟污泥对熟料凝结时间影响的研究进展[J]. 水泥技术, 2023, 1(3): 91-96.
[7] 陈龙, 冯云, 郑金召, 李榛. 协同处置危固废过程中熟料频繁结球的分析处置[J]. 水泥技术, 2023, 1(1): 53-61.
[8] 王玉楷, 朱志领. 危险固体废弃物对水泥窑工况的影响[J]. 水泥技术, 2022, 1(6): 77-82.
[9] 韩仲琦.
国外水泥工业消纳废弃物的现状(下)
[J]. 水泥技术, 2020, 1(1): 57-61.
[10] 韩仲琦.
国外水泥工业消纳废弃物的现状(上)
[J]. 水泥技术, 2019, 1(6): 84-90.
[11] 嵇磊, 赵旭红, 曹培, 赵宇, 孙鹤, 黄永胜, 韦娟, 张广芳, 俞刚, 吴德厚, . 水泥窑协同处置危险废物典型污染物在水泥熟料中的固化研究[J]. 水泥技术, 2018, 1(2): 31-35.
[12] 苑辉, 李惠, 赵春芳, 李海龙, 郑金召, 赵利卿, 李勇, 林莉.
危险废物衍生燃料在水泥窑协同处置的应用分析
[J]. 水泥技术, 2014, 1(5): 17-21.
[13] 刘乔, 李慧胜, 时玉珍.
水泥窑协同处置固废中硒元素的测定方法探讨
[J]. 水泥技术, 2014, 1(1): 97-100.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview