Please wait a minute...
水泥技术, 2019, 1(4): 49-52    doi: 10.19698/j.cnki.1001-6171.20194049
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
比表面积测试仪的影响因素及校正方法
中建材(合肥)粉体科技装备有限公司
Influence Factors and Correction Method of Specific Surface Area Tester
China Building Materials (Hefei) Powder Technology Equipment Co., Ltd.
下载:  PDF (4411KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 探讨了影响比表面积准确性的因素。结合生产实际,详细分析了密度、空隙率和空气粘度因素对比表面积仪测试准确性的影响,提出了校正方法。当水泥成品密度值与真实值之差在±0.04g/cm3以内时,比表面积检测值与准确值之差在允许范围内;比表面积仪输入空隙率不是0.5时,应当按照ε3/2/(1-ε)2/2修正。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡文举
关键词:  比表面积  密度  空隙率  粉煤灰    
Abstract: The factors affecting the accuracy of specific surface area were discussed. Based on the production practice, the influence of density, voidage and air viscosity factors on the instrument were analyzed in detail, and then the correction methods were proposed. When the error between the density value and the true value of cement was within ±0.04g/cm3, the specific surface area value and accuracy value are in the permissible error range. When the input of voidage [ε] was not 0.5, it should be changed according to the formula of ε3/2/(1-ε)2/2.
Key words:  specific surface area    density    voidage    fly ash
收稿日期:  2019-04-08                出版日期:  2019-07-25      发布日期:  2019-08-15      整期出版日期:  2019-07-25
ZTFLH:  TQ172.16  
引用本文:    
蔡文举.
比表面积测试仪的影响因素及校正方法
[J]. 水泥技术, 2019, 1(4): 49-52.
CAI Wenju. Influence Factors and Correction Method of Specific Surface Area Tester. Cement Technology, 2019, 1(4): 49-52.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20194049  或          http://www.cemteck.com/CN/Y2019/V1/I4/49
[1] 蔡文举. 水泥颗粒级配分析的实践[J]. 水泥技术, 2019, 1(5): 56-58.
[2] 魏灿, 俞利涛, 童睿, 王纯良.
水泥粉磨智能优化控制系统的应用
[J]. 水泥技术, 2019, 1(3): 33-39.
[3] 王辉诚, 郑旭, 刘晨, 纪国晋, 孔祥芝, 颜碧兰, 杜振霞, 温培艳.
脱硝粉煤灰铵含量测定方法的试验研究
[J]. 水泥技术, 2019, 1(1): 26-33.
[4] 杜鑫, 宋留庆, 贺孝一, 豆海建, 秦中华, 张明飞, 王维莉.
不同混合材对水泥辊磨产品比表面积的影响
[J]. 水泥技术, 2018, 1(5): 68-72.
[5] 张煜, 张殿辉, 李金海. 基于海外项目数据分析的照明报价研究[J]. 水泥技术, 2017, 1(4): 82-85.
[6] 何玉鑫.
石膏晶须对粉煤灰水泥石性能和结构的影响
[J]. 水泥技术, 2015, 1(6): 27-30.
[7] 郭晓潞, 施惠生, 董文靖. 纳米改性CFA-MSWI复合地聚合物的耐久性[J]. 水泥技术, 2014, 1(2): 30-34.
[8] 蔡振雷, 张玉柱, 龙跃, 邢宏伟, 田铁磊. 改性钢渣作水泥混合材的基础性能研究[J]. 水泥技术, 2012, 1(5): 28-30.
[9] 李萃斌, 苏达根.
循环流化床粉煤灰的组成形貌与性能研究
[J]. 水泥技术, 2010, 1(3): 29-30.
[10] 卓瑞锋, 张召述, 夏举佩, 陶敏龙. 预活化粉煤灰作混合材的研究[J]. 水泥技术, 2010, 1(1): 25-28.
[11] 郑翔, 李卫国, 占奇.
硅粉、矿渣微粉、粉煤灰在制备高性能胶凝材料中的应用
[J]. 水泥技术, 2009, 1(6): 101-103.
[12] 苏达根, 王功勋, 钟小敏.
陶瓷抛光砖粉的组成及火山灰性研究
[J]. 水泥技术, 2008, 1(4): 22-24.
[13] 杨瑞海, 陆文雄, 余淑华, 李柯, 李小亮.
高效矿渣复合助磨剂的试验研究
[J]. 水泥技术, 2008, 1(2): 75-78.
[14] 施惠生, 吴敏.
脱硫石膏-粉煤灰复合胶凝体系强度的改性研究
[J]. 水泥技术, 2007, 1(6): 29-34.
[15] 刘辉, 杨立荣, 王春梅 .
高碱熟料生产无碱害水泥的研究
[J]. 水泥技术, 2007, 1(4): 72-73.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[8] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[9] ZHANG Jiangtao, LIU Baoliang. Processing of the Wet Materials of the Winter Cement Factory in the High Cold Region[J]. Cement Technology, 2018, 1(1): 74 -82 .
[10] WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure[J]. Cement Technology, 2018, 1(1): 83 -88 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview