Please wait a minute...
水泥技术, 2020, 1(2): 93-95    doi: 10.19698/j.cnki.1001-6171.20202093
  技术改造 本期目录 | 过刊浏览 | 高级检索 |
熟料烧成系统篦冷机自动化控制改进措施
安徽海螺川崎装备制造有限公司
Measures for Improving Grate Cooler Automatic Control in Clinker Pyro-system
Anhui Conch Kawasaki Equipment Manufacturing Co., Ltd.
下载:  PDF (1923KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 公司原篦冷机抗故障能力差,运行不稳定,现场巡检不便,故障查找较慢,料层控制稳定性差,漏料严重。通过将6列篦床改为9列篦床,调整现场触屏和中控双显示,开发料床温度检测系统控制料层,增加液压油流量压力自修正和前馈控制,优化算法,自动调整压力系统设定值,篦冷机运行稳定性显著提高,二次风温由1 050℃提高至1 152℃,出篦冷机熟料温度平均约为85℃,熟料生产电耗降至60kWh/t。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彪
关键词:  篦冷机  温度检测  液压油流量  前馈控制    
Abstract: Considering the unsatisfactory conditions of our existing grate cooler, i.e. the poor failure resistance, unstable operation, inconvenience for on-site inspection, slow troubleshooting, low stability of clinker layer control and high leak volume, some improvements were made, including changing the 6-row grate bed to 9-row grate bed, adopting the touch screen at the site and the double display in the central control room, developing the clinker bed temperature detection system to control the clinker layers, adding hydraulic oil flow pressure self-correction and feed forward control, optimizing algorithms and adopting the automatic adjustment to the pressure system settings. After the improvements, the operation reliability of the grate cooler is significantly improved, the secondary air temperature increases from 1 050℃ to 1 152℃, the average temperature of clinkers out of the grate cooler is about 85℃, and the power consumption for clinker production decreases to 60kWh/t. 
Key words:  grate cooler    temperature detection    hydraulic oil flow    feed forward control
收稿日期:  2019-11-08                出版日期:  2020-03-25      发布日期:  2020-04-02      整期出版日期:  2020-03-25
ZTFLH:  TQ172.622.4  
引用本文:    
王彪.
熟料烧成系统篦冷机自动化控制改进措施
[J]. 水泥技术, 2020, 1(2): 93-95.
WANG Biao. Measures for Improving Grate Cooler Automatic Control in Clinker Pyro-system. Cement Technology, 2020, 1(2): 93-95.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20202093  或          http://www.cemteck.com/CN/Y2020/V1/I2/93
[1] 刘旭, 尤小平, 孙志鹏, 刘劲松, 王磊.
第二代高温辊式破碎机用辊轴的研究
[J]. 水泥技术, 2020, 1(3): 37-38.
[2] 邹波, 兰东, 孙泽玖, 林廷全.
LBTF3200型篦冷机技术改造
[J]. 水泥技术, 2020, 1(3): 82-87.
[3] 赵晓东.
篦冷机堆“雪人”的故障分析及处理
[J]. 水泥技术, 2019, 1(3): 65-68.
[4] 舒超, 王安伟, 王清, 孔建平. 篦冷机风机的技术改造[J]. 水泥技术, 2019, 1(1): 83-86.
[5] 桂许君.
篦冷机的使用维护及系统优化
[J]. 水泥技术, 2018, 1(6): 56-60.
[6] 刘贵新, 陈昌华, 陶从喜, 彭学平, 李亮.
带SLC分解炉的4 000t/d熟料生产线烧成系统技术优化
[J]. 水泥技术, 2016, 1(5): 87-90.
[7] 师留刚, 夏中清, 杨中强, 梁晓林.
仿人思想在水泥篦冷机环节的开发与应用
[J]. 水泥技术, 2016, 1(5): 53-55.
[8] 高密军, 郑金平, 罗振. 篦冷机喷雾降温系统在窑头电改袋中的成功应用[J]. 水泥技术, 2016, 1(2): 79-81.
[9] 刘云峰. 气固耦合传热数值模拟在篦冷机冷却熟料过程中的应用研究[J]. 水泥技术, 2016, 1(1): 24-27.
[10] 陶从喜, 董蕊, 钟克辉, 黄茂, 陈廷伟, 刘长锁, 苏兴辉, 梁乾, 陈学勇, 马玉国, 李国军. 2500 t/d烧成系统的改造[J]. 水泥技术, 2014, 1(6): 17-19.
[11] 方岳亮, 许龙旭. 提高篦冷机冷却风机效能的措施[J]. 水泥技术, 2014, 1(5): 50-53.
[12] 向东湖, 汪伟. 篦冷机多缸协同运动的控制方法[J]. 水泥技术, 2014, 1(1): 81-82.
[13] 向东湖, 钱伟, 邵俊华, 许龙旭.
篦冷机气固换热过程的影响因素浅析
[J]. 水泥技术, 2013, 1(1): 24-26.
[14] 潘新庆, 向东湖, 汪伟, 陈学勇.
节能技术在篦冷机液压传动系统中的应用
[J]. 水泥技术, 2011, 1(4): 29-31.
[15] 曹 成.
第三代篦冷机活动框架悬摆支撑的特点
[J]. 水泥技术, 2003, 1(6): 48-49.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview