Please wait a minute...
水泥技术, 2023, 1(2): 32-    doi: 10.19698/j.cnki.1001-6171.20232032
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
SCR脱硝系统工艺方案设计及影响分析
南京凯盛开能环保能源有限公司,江苏  南京  210036
Process Design and Influence Analysis of SCR Denitration System
Nanjing Kesen Kainen Environment & Energy Co., Ltd. , Nanjing Jiangsu 210036, China 
下载:  PDF (2889KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 分析了水泥窑烟气特性和SCR脱硝系统运行后对水泥窑及余热发电系统的影响,针对实施SCR脱硝的难点,确定采用“高温高尘”SCR脱硝工艺技术路线,以实现窑尾氮氧化物的超低排放。采用“高温高尘”SCR脱硝系统工艺方案,氮氧化物排放浓度可从300mg/Nm3降低至45mg/Nm3,达到超低排放要求,氨逃逸浓度<5mg/Nm3,吨熟料生产成本预计增加4.25元,余热发电系统总发电量预计减少0.67%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冬冬
王朝雄
关键词:  SCR脱硝系统  氨逃逸  NOX超低排放     
Abstract: 
The flue gas characteristics of cement kiln and the influence of SCR denitration system on cement kiln and waste heat power generation system were analyzed. In view of the difficulties in implementing SCR denitration, the technical route of "high temperature and high dust" SCR denitration process was determined to achieve ultra-low emission of nitrogen oxides at the kiln tail. Using "high temperature and high dust" SCR denitration system process scheme, nitrogen oxide emission concentration can be reduced from 300mg/Nm3 to 45mg/Nm3, to meet the requirements of ultra-low emission, ammonia escape concentration <5mg/Nm3, tons of clinker production cost is expected to increase 4.25 yuan, the total power generation of waste heat power generation system is expected to reduce 0.67%.
Key words:  SCR denitration system    ammonia escape    ultra-low NOX emission
收稿日期:  2022-07-01      修回日期:  2023-03-25           出版日期:  2023-03-25      发布日期:  2023-03-25      整期出版日期:  2023-03-25
ZTFLH:  TQ172.688.9  
引用本文:    
张冬冬, 王朝雄. SCR脱硝系统工艺方案设计及影响分析[J]. 水泥技术, 2023, 1(2): 32-.
ZHANG Dongdong, WANG Chaoxiong. Process Design and Influence Analysis of SCR Denitration System. Cement Technology, 2023, 1(2): 32-.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20232032  或          http://www.cemteck.com/CN/Y2023/V1/I2/32
[1] 张滨, 郎济涵.
SNCR脱硝系统技术改造实践
[J]. 水泥技术, 2020, 1(6): 23-26.
[2] 高密军, 罗振.
我国水泥厂脱硝技术现状及展望
[J]. 水泥技术, 2016, 1(6): 84-86.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview