Please wait a minute...
水泥技术, 2024, 1(1): 89-92    doi: 10.19698/j.cnki.1001-6171.20241089
  材料研究 本期目录 | 过刊浏览 | 高级检索 |
低碱高硅率高抗硫酸盐水泥熟料的研发及生产实践
江西安福南方水泥有限公司,江西  安福  343200
Development and Production of Low-alkali and High Silica Ratio and High Sulfate-resistant Cement Clinker
Jiangxi Anfu Southern Cement Limited Company, Anfu Jiangxi 343200, China
下载:  PDF (1190KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过采用资源劣化的自有矿山高硅低钙石灰石原料,进一步优选原燃材料,改进生料配料、加强水泥熟料质量监测和改善煅烧中控操作等措施,研发生产了碱含量约0.2%,硅酸率约3.50的低碱、高硅率、高抗硫酸盐水泥熟料,满足了易受硫酸盐侵蚀、冻融和干湿作用的海港、水利、地下工程建设要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹勤
邓荪
刘帅明
胡国林
朱璟
关键词:  低碱  高硅率  抗硫酸盐  特种水泥    
Abstract: This paper outlines the research and development process, as well as the production practice of a specialized cement. Despite the less-than-ideal quality of high-silica, low-calcium limestone sourced from our own mines, significant improvements were made through the meticulous selection of raw and fuel materials, refining the raw meal formulation, enhancing the quality control of cement clinker, and improving the operation of calcination control. These efforts led to the development and production of a new type of cement clinker with approximately 0.2% alkali content and a silica ratio of about 3.50. This low-alkali, high-silica, and high sulfate-resistant cement clinker fulfills the construction requirements for environments prone to sulfate erosion, freeze-thaw cycles, and alternating dry-wet conditions, such as harbors, water conservancy projects, and underground engineering.
Key words:  low-alkali    high silica modulus    sulfate resistance    specialty cement
收稿日期:  2023-07-25                出版日期:  2024-01-25      发布日期:  2024-01-23      整期出版日期:  2024-01-25
ZTFLH:  TQ172.73.3  
引用本文:    
曹勤, 邓荪, 刘帅明, 胡国林, 朱璟. 低碱高硅率高抗硫酸盐水泥熟料的研发及生产实践[J]. 水泥技术, 2024, 1(1): 89-92.
CAO Qin, DENG Sun, LIU Shuaiming, HU Guolin, ZHU Jing. Development and Production of Low-alkali and High Silica Ratio and High Sulfate-resistant Cement Clinker. Cement Technology, 2024, 1(1): 89-92.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20241089  或          http://www.cemteck.com/CN/Y2024/V1/I1/89
[1] 彭凌云, 赵海洋, 刘金磊. TRM辊磨粉磨抗硫酸盐水泥的应用[J]. 水泥技术, 2022, 1(4): 34-38,46.
[2] 张红巍. G级高抗硫酸盐油井水泥的生产实践[J]. 水泥技术, 2022, 1(1): 75-78.
[3] 孔德高, 徐梅花.
利用煤矸石和矿山剥离粘土生产低碱水泥的实践
[J]. 水泥技术, 2021, 1(1): 81-83.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview