Please wait a minute...
水泥技术, 2025, 1(4): 19-28    doi: 10.19698/j.cnki.1001-6171.20254019
  中材国际第三届水泥绿色智能发展大会专题—绿色低碳 本期目录 | 过刊浏览 | 高级检索 |

CO2直接空气捕集技术驱动水泥行业低碳发展

中国建材装备集团有限公司合肥水泥研究设计院有限公司,安徽  合肥  230051

CO2 Direct Air Capture Technology Drives Low-carbon Development in Cement Industry

CNBM Equipment Group, Hefei Cement Research & Design Institute Co., Ltd. , Hefei Anhui 230051, China

下载:  PDF (2336KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

直接空气碳捕集(DAC)技术可通过捕集大气中的低浓度CO2,实现CO2的永久封存或资源化利用,为水泥行业提供“净负排放”路径,其核心技术在于吸附剂的创新。本文系统总结了吸附剂的最新研究进展,并通过收集各类吸附剂实验数据、分析不同技术路线及实际应用案例,对比了液体吸附剂及固态吸附材料的特点。在水泥行业协同方面,提出了水泥窑余热驱动DAC再生,捕集CO2矿化固废生成胶凝材料部分替代熟料,形成碳闭环(如“绿氢-DAC-矿化”体系)等观点,为推动DAC技术及其与水泥行业的深度融合提供了理论依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张涵
顾春晗
苏明雪
李宁
关键词:  直接空气碳捕集  水泥行业  吸附剂  碳捕集装备  协同发展    
Abstract: 

Direct Air Capture (DAC) technology can achieve permanent sequestration or resource utilization of CO2 by capturing low-concentration CO2 from the atmosphere, providing a "net-negative emissions" pathway for the cement industry. Its core innovation lies in the development of adsorbents. This article systematically summarizes recent research progress in adsorbents and compares the characteristics of liquid absorbents versus solid adsorbents by compiling experimental data, analyzing different technical routes, and examining actual application cases. Regarding cement industry integration, it proposes concepts such as using cement kiln waste heat to drive DAC regeneration, mineralizing captured CO2 with solid waste to produce cementitious materials as partial clinker substitutes, and establishing carbon-closed loops (e.g., a "green hydrogen-DAC-mineralization" system). These insights provide a theoretical foundation for advancing the deep integration of DAC technology with the cement industry.

Key words:  direct air capture    cement industry    adsorbents    carbon capture equipment    synergistic development
收稿日期:  2025-04-21      修回日期:  2025-07-25           出版日期:  2025-07-25      发布日期:  2025-07-25      整期出版日期:  2025-07-25
ZTFLH:  X701  
基金资助: 

中材国际前沿科学开放基金项目(2024ZC004

作者简介:  张 涵(2000—),女,硕士,助理工程师,主要从事电催化CO2研究。Email:zh@hcrdi.com
引用本文:    
张涵, 顾春晗, 苏明雪, 李宁.

CO2直接空气捕集技术驱动水泥行业低碳发展 [J]. 水泥技术, 2025, 1(4): 19-28.
ZHANG Han, GU Chunhan, SU Mingxue, LI Ning.

CO2 Direct Air Capture Technology Drives Low-carbon Development in Cement Industry . Cement Technology, 2025, 1(4): 19-28.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20254019  或          http://www.cemteck.com/CN/Y2025/V1/I4/19
[1] 朴佳思, 赵志国, 张磊, 徐鸿照, 周长灵. 气凝胶隔热材料在水泥行业的应用[J]. 水泥技术, 2024, 1(2): 82-86.
[2] 张志敏, 李宇辉.
城市建筑垃圾处理现状及水泥行业综合利用
[J]. 水泥技术, 2018, 1(4): 91-93.
[3] 宣轶群, 吕祥瑞, 张平. 基于NFPA标准的水泥厂电力室IG541消防设计探讨[J]. 水泥技术, 2016, 1(3): 65-68.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview