粉煤灰,钢渣,粉煤灰,曲面响应法,配合比设计 ," /> 粉煤灰,钢渣,粉煤灰,曲面响应法,配合比设计 ,"/> slag,steel slag, fly ash,surface response method, mix ratio design ,"/> <p class="MsoNormal"> <span>碱激发矿渣</span><span>-</span><span>钢渣</span><span>-</span><span>粉煤灰复合胶凝材料的配比优化</span>
Please wait a minute...
水泥技术, 2024, 1(4): 77-83    doi: 10.19698/j.cnki.1001-6171.20244077
  材料研究 本期目录 | 过刊浏览 | 高级检索 |

碱激发矿渣-钢渣-粉煤灰复合胶凝材料的配比优化

1 陕西北元集团水泥有限公司,陕西  神木  7193192 陕西北元化工集团股份有限公司,陕西  神木  7193193 陕西有色天宏瑞科硅材料有限责任公司,陕西  榆林  719200

Optimization of the Mixing Ratio of Alkali-excited Slag-steel Slag-fly Ash Composite Cementitious Material

1. Shaanxi Beiyuan Group Cement Co., Ltd. , Shenmu Shaanxi 719319, China;2. Shaanxi Beiyuan Chemical Group Co., Ltd. , Shenmu Shaanxi 719319, China; 3. Shaanxi Nonferrous Tianhong Ruike Silicon Materials Co., Ltd. , Yulin Shaanxi 719200, China 

下载:  PDF (2663KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

为进一步提高矿渣、钢渣、粉煤灰等工业固废的综合利用率,选取矿渣、钢渣、粉煤灰、碱当量为影响因素,以28d抗压强度和压折比为响应值,采用曲面响应法对碱激发矿渣-钢渣-粉煤灰复合胶凝材料的原料配合比进行了优化设计。通过回归方程拟合分析和响应曲面分析,揭示了各影响因子对该碱激发材料性能的影响规律,并在此基础上确定了原料最佳配合比。研究结果表明,矿渣掺量为60%,钢渣掺量为20%,粉煤灰掺量为20%,碱当量为6%时,碱激发材料28d抗压强度和压折比分别达到47.8MPa7.4MPa,所制备的材料展现出较高的强度、较低的脆性,综合性能较优。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马少华
李杰
崔佳宇
李腾飞
钟浩
关键词:  粉煤灰')" href="#">

粉煤灰  钢渣  粉煤灰  曲面响应法  配合比设计     

Abstract: 

In order to further improve the comprehensive utilization rate of industrial solid wastes such as slag, steel slag, and fly ash, it selected slag, steel slag, fly ash, and alkali equivalent as influencing factors, and used the 28d compressive strength and compression-fold ratio as response values. The surface response method was used to optimize the raw material mix ratio of alkali-activated slag-steel slag-fly ash composite cementitious materials. Through regression equation fitting analysis and response surface analysis, the influence of each influencing factor on the performance of the alkali-activated material was revealed, and the optimal raw material mix ratio was determined on this basis. The research results show that when the slag content is 60%, the steel slag content is 20%, the fly ash content is 20%, and the alkali equivalent is 6%, and then, the 28d compressive strength and compression-fold ratio of the alkali-activated material reach 47.8MPa and 7.4MPa respectively. The prepared material exhibits high strength and low brittleness, and has excellent overall performance.

Key words:  slag')" href="#">

slag    steel slag    fly ash    surface response method    mix ratio design

收稿日期:  2023-11-01      修回日期:  2024-07-25           出版日期:  2024-07-25      发布日期:  2024-07-25      整期出版日期:  2024-07-25
ZTFLH:  TU526  
引用本文:    
马少华, 李杰, 崔佳宇, 李腾飞, 钟浩.

碱激发矿渣-钢渣-粉煤灰复合胶凝材料的配比优化 [J]. 水泥技术, 2024, 1(4): 77-83.
MA Shaohua, LI Jie, CUI Jiayu, LI Tengfei, ZHONG Hao.

Optimization of the Mixing Ratio of Alkali-excited Slag-steel Slag-fly Ash Composite Cementitious Material . Cement Technology, 2024, 1(4): 77-83.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20244077  或          http://www.cemteck.com/CN/Y2024/V1/I4/77
[1] 李正泽, 李刚, 郭晓潞, 刘卓霖, 佘安明.

以煤矸石和粉煤灰为混合材的水泥生命周期环境影响评价 [J]. 水泥技术, 2023, 1(6): 86-89.

[2] 谢明轩 .

不同种类生物质灰对混凝土力学性能影响研究 [J]. 水泥技术, 2023, 1(6): 90-94.

[3] 赵文礼. 粉煤灰计量精度改进措施[J]. 水泥技术, 2023, 1(4): 60-63.
[4] 张冠军. 复掺石灰石粉高强机制砂混凝土性能研究[J]. 水泥技术, 2022, 1(6): 87-94.
[5] 张冠军, 李涛. 脱硫石膏用作干混砂浆矿物掺合料改性剂的研究[J]. 水泥技术, 2022, 1(4): 87-96.
[6] 廖孟柯, 黄耀德, 付林, 王能, 周阳. 低温条件下超细粉煤灰水泥砂浆抗硫酸盐侵蚀性能的研究[J]. 水泥技术, 2022, 1(2): 59-63.
[7] 夏珍珍, 邢立新, 杨柳, 费延梅. 粉煤灰铵离子对水泥性能的影响[J]. 水泥技术, 2022, 1(2): 64-67,73.
[8] 张冠军. 钢渣骨料在混凝土中的应用研究[J]. 水泥技术, 2022, 1(2): 74-79.
[9] 孙静敏. 粉煤灰替代煤矸石生产熟料的应用实践[J]. 水泥技术, 2021, 1(5): 89-91.
[10] 刘迪, 何毛, 陈军, 聂文海, 赵剑波. 粉煤灰易磨性及活性指数研究分析[J]. 水泥技术, 2021, 1(4): 37-39.
[11] 王宝占, 贺芳. 超细粉磨粉煤灰用于配制C60混凝土的试验研究[J]. 水泥技术, 2021, 1(4): 40-42.
[12] 杜鑫, 聂文海, 柴星腾, 石国平. 金属铁对钢渣粉制备能耗的影响[J]. 水泥技术, 2021, 1(3): 59-62.
[13] 周婷婷, 封孝信, 谢元涛, 李庆龙, 刘志刚.
粉煤灰-脱硫灰制备免烧种植陶粒的研究
[J]. 水泥技术, 2020, 1(5): 99-104.
[14] 安宇坤, 刘爱平, 刘刚, 贾援.
磷酸镁水泥制备及性能研究
[J]. 水泥技术, 2020, 1(3): 100-104.
[15] 蔡文举. 水泥颗粒级配分析的实践[J]. 水泥技术, 2019, 1(5): 56-58.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview