Please wait a minute...
水泥技术, 2019, 1(3): 95-99    doi: 10.19698/j.cnki.1001-6171.20193095
  材料研究 本期目录 | 过刊浏览 | 高级检索 |
SiO2气凝胶在混凝土中的稳定、分散与保温作用研究
天津水泥工业设计研究院有限公司
Stability, Dispersion and Thermal Insulation of SiO2 Aerogels in Concrete
Tianjin Cement Industry Design & Research Institute Co., Ltd.
下载:  PDF (3028KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶在混凝土中的稳定性和分散性是成功制备和发挥气凝胶/混凝土保温材料保温性能的关键。本文研究了在亲水性混凝土体系和机械搅拌作用下,通过调节和控制气凝胶表面的化学状态,制备了稳定的气凝胶/混凝土材料,研究了气凝胶与混凝土基体的相互作用以及其他重要因素对气凝胶结构稳定性的影响。用傅立叶变换红外光谱仪、热重分析、氮气吸附-解吸等温线、扫描电子显微镜、导热系数分析仪等对样品进行了表征。结果表明,表面活性剂通过调节和控制动力学参数,成功地附着在气凝胶表面。气凝胶颗粒在混凝土中稳定,并保持原有形状。随着气凝胶含量的增加,混凝土的导热系数逐渐减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李振华
关键词:  气凝胶  动力学参数  混凝土  导热系数    
Abstract: 
The stability and dispersion of aerogels in concrete is the key to the successful preparation and application of aerogels / concrete insulation materials. In this paper, the stable aerogel / concrete material was prepared by adjusting and controlling the chemical state of aerogel surface under the action of hydrophilic concrete system and mechanical agitation. The interaction between aerogel and concrete matrix and other important factors on the stability of aerogel structure were studied. The samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption isotherm, scanning electron microscopy and thermal conductivity analyzer. The results showed that the surfactant was successfully adhered to the aerogel surface by adjusting and controlling the kinetic parameters. Aerogel particles were stable in concrete and retain their original shape. With the increase of aerogel content, the thermal conductivity of concrete decreased.
Key words:  aerogels    kinetic parameters    concrete    thermal conductivity
收稿日期:  2019-04-02                出版日期:  2019-05-25      发布日期:  2019-05-29      整期出版日期:  2019-05-25
ZTFLH:  TU528.042  
引用本文:    
李振华.
SiO2气凝胶在混凝土中的稳定、分散与保温作用研究
[J]. 水泥技术, 2019, 1(3): 95-99.
LI Zhenhua. Stability, Dispersion and Thermal Insulation of SiO2 Aerogels in Concrete. Cement Technology, 2019, 1(3): 95-99.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20193095  或          http://www.cemteck.com/CN/Y2019/V1/I3/95
[1] 李振华.
石墨烯气凝胶增韧水泥复合材料的研究
[J]. 水泥技术, 2019, 1(4): 95-101.
[2] 孙小永, 杨栋.
泡沫混凝土技术在水泥工程上的应用
[J]. 水泥技术, 2019, 1(2): 73-76.
[3] 马静伟, 范立国, 李军.
混凝土多仓库施工工艺优化与应用
[J]. 水泥技术, 2018, 1(2): 87-90.
[4] 刘永刚, 高宏伟, 肖桂清. 采用贫混凝土基层的道路结构设计方法[J]. 水泥技术, 2018, 1(1): 27-31.
[5] 王庆江. 圆形钢管混凝土柱框架典型节点受力性能分析[J]. 水泥技术, 2018, 1(1): 83-88.
[6] 刘旭东. 如何执行60kV输电线路EPC工程[J]. 水泥技术, 2018, 1(1): 89-91.
[7] 王庆江. 窑尾框架节点抗震性能分析[J]. 水泥技术, 2017, 1(5): 71-77.
[8] 李红雨. 适合中美欧规范的混凝土框架结构后处理程序的开发[J]. 水泥技术, 2017, 1(1): 64-66.
[9] 李炳杰. 废弃混凝土再利用的研究[J]. 水泥技术, 2015, 1(6): 35-38.
[10] 万莉, 张进, 叶雨峰.
水泥熟料和石灰石对混凝土耐磨性能试验研究
[J]. 水泥技术, 2012, 1(3): 101-103.
[11] 万莉, 张进, 秦明龙.
局部磨损对筒仓受力性能影响的有限元分析
[J]. 水泥技术, 2012, 1(2): 17-20.
[12] 施惠生、, 李东锋, 吴凯, 郭晓潞、. 钢渣对水泥混凝土性能影响的研究进展[J]. 水泥技术, 2011, 1(5): 29-34.
[13] 向山河. 大体积混凝土温度裂缝的控制[J]. 水泥技术, 2010, 1(2): 37-38.
[14] 施惠生, 黄小亚. 水泥混凝土水化热的研究与进展[J]. 水泥技术, 2009, 1(6): 21-26.
[15] 唐杰, 项阳.
粘钢加固混凝土构件二次受力的非线性有限元分析
[J]. 水泥技术, 2009, 1(6): 108-110.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] ZHANG Jiangtao, LIU Baoliang. Processing of the Wet Materials of the Winter Cement Factory in the High Cold Region[J]. Cement Technology, 2018, 1(1): 74 -82 .
[7] LIU Xudong. How to Execute 60 kV Transmission Line EPC Project[J]. Cement Technology, 2018, 1(1): 89 -91 .
[8] CAI Wu. [J]. Cement Technology, 2018, 1(1): 96 -98 .
[9] YAO Piqiang, HAN Hui, YU Weimin. Study on Calcining and Preliminary Application of New Low Calcium Cement[J]. Cement Technology, 2018, 1(2): 17 -25 .
[10] DOU Haijian, WANG Weili, QIN Zhonghua, DU Xin, CHAI Xingteng, YU Tao. The Flow Analysis Research of the Pressure Frame Wear Problem in a Roller Mill[J]. Cement Technology, 2018, 1(2): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview