Please wait a minute...
水泥技术, 2023, 1(2): 83-    doi: 10.19698/j.cnki.1001-6171.20232083
  工程技术 本期目录 | 过刊浏览 | 高级检索 |
锈蚀对网壳结构抗连续性倒塌性能的影响
天津水泥工业设计研究院有限公司,天津  300400
Effect of Corrosion on Continuous Collapse Resistance of Reticulated Shell Structures
Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China
下载:  PDF (14260KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
发生在水泥生产线建(构)筑物空间网格结构节点、支座处的锈蚀易导致相关的杆件失效,引发建(构)筑物空间网格结构连续性倒塌。通过有限元数值模拟,研究了实际服役结构在不同锈蚀年限下抗连续性倒塌性能的变化情况。动力响应过程中单层网壳结构最大应力达到静力作用下的1.5倍,部分杆件屈服,相邻节点位移达结构跨度的1/500~1/300。双层球面网壳结构冗余度高,抗连续性倒塌性能较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高祁
关键词:  空间网格结构  钢材锈蚀  抗连续性倒塌    
Abstract: 
Corrosion on the node or support of the spatial grid structure in cement production lines can easily lead to the failure of the related rods, causing the continuous collapse of the spatial grid buildings(structures). Finite element numerical simulation is used to study the continuous collapse resistance of structures in service under different corroded years. In the dynamic response process, the maximum stress of single-layer reticulated shell reaches 1.5 times of that under static action, some members yield, and the displacement of adjacent joints reaches 1/500 to 1/300 of structural span. The double-layer spherical reticulated shell structure has higher redundancy and better resistance to continuous collapse.
Key words:  spatial grid structure    steel corrosion    continuous collapse resistance
收稿日期:  2022-06-28      修回日期:  2023-03-25           出版日期:  2023-03-25      发布日期:  2023-03-25      整期出版日期:  2023-03-25
ZTFLH:  TU356  
引用本文:    
高祁. 锈蚀对网壳结构抗连续性倒塌性能的影响[J]. 水泥技术, 2023, 1(2): 83-.
GAO Qi. Effect of Corrosion on Continuous Collapse Resistance of Reticulated Shell Structures. Cement Technology, 2023, 1(2): 83-.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20232083  或          http://www.cemteck.com/CN/Y2023/V1/I2/83
[1] 朱玉林. 栓焊结合钢网架熟料库屋盖设计与施工安装[J]. 水泥技术, 2022, 1(6): 57-62.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview