Please wait a minute...
水泥技术, 2024, 1(5): 36-41    doi: 10.19698/j.cnki.1001-6171.20245036
  数字智能 本期目录 | 过刊浏览 | 高级检索 |
球磨机能耗和研磨效率离散元数值仿真设计优化
1 合肥水泥研究设计院有限公司,安徽  合肥  230051; 2 中建材(合肥)粉体科技装备有限公司,安徽  合肥  230051
Discrete Element Numerical Simulation on Design Optimization of Energy Consumption and Grinding Efficiency in Ball Mill
1. Hefei Cement Research & Design Institute Corporation Ltd. , Hefei Anhui 230051, China; 2. CNBM (Hefei) Powder Technology Equipment Co., Ltd. , Hefei Anhui 230051, China
下载:  PDF (10932KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 球磨机是水泥粉磨系统中的关键性设备,基于离散元法和Rocky DEM软件,对球磨机运行时研磨介质和物料的运动过程进行了数值仿真,分析了球磨机转速、研磨介质材料属性、填充率、级配对物料颗粒运动状态和设备能耗的影响。研究表明,在不同的物料特性和加工要求下,球磨机转速、研磨介质最佳填充率和级配各不相同;使用陶瓷球代替钢球可以明显降低球磨机能耗,研磨介质级配对球磨机能耗利用率的影响大于研磨介质材料属性,研磨介质的碰撞恢复系数对球磨机能耗利用率的影响大于研磨介质的密度。基于单因素分析和多目标优化设计方法,不仅可以改进球磨机研磨介质的材质和级配,还可以实现水泥粉磨系统的节能降耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
水沛
范威
谢传东
殷腾飞
关键词:  球磨机  数值仿真  研磨介质  参数优化  节能降耗    
Abstract: Ball mill is the key equipment in cement grinding system. Based on the Discrete Element Method and Rocky DEM software, the motion process of grinding medium and material during the operation of ball mill is numerically simulated. The effects of mill rotation speed, material properties of grinding medium, medium filling rate and gradation on the motion of material particles and equipment energy consumption are analyzed. The research shows that under different material characteristics and processing requirements, the mill rotation speed, the optimum filling rate and gradation of grinding medium are different. The use of ceramic balls instead of steel balls can significantly reduce the energy consumption of ball mills. Moreover, the influence of grinding medium gradation on the energy consumption utilization rate of ball mills is greater than that of the material properties of grinding medium, and the influence of restitution coefficient of grinding medium on the energy consumption utilization rate is greater than that of the density of grinding medium. Based on single factor analysis and multi-objective optimization design method, it is possible to not only improve the material and gradation of grinding medium but also achieve energy conservation and consumption reduction of cement grinding systems.
Key words:  ball mill    numerical simulation    grinding medium    parameter optimization    energy conservation and consumption reduction
收稿日期:  2024-07-28                出版日期:  2024-09-25      发布日期:  2024-09-25      整期出版日期:  2024-09-25
ZTFLH:  TQ172.632.1  
基金资助: 中国建材集团有限公司揭榜挂帅项目(2021YCJS01、2023ZCYJ03)
引用本文:    
水沛, 范威, 谢传东, 殷腾飞. 球磨机能耗和研磨效率离散元数值仿真设计优化[J]. 水泥技术, 2024, 1(5): 36-41.
SHUI Pei, FAN Wei, XIE Chuandong, YIN Tengfei. Discrete Element Numerical Simulation on Design Optimization of Energy Consumption and Grinding Efficiency in Ball Mill. Cement Technology, 2024, 1(5): 36-41.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20245036  或          http://www.cemteck.com/CN/Y2024/V1/I5/36
[1] 赵景顺, 李川, 王明治.

双圈流水泥粉磨系统节能降耗优化调整实践 [J]. 水泥技术, 2024, 1(6): 20-26.

[2] 荣亚坤, 杨蕾, 邓荣娟, 王文清.

先进热工技术装备及其在万吨水泥生产线的应用 [J]. 水泥技术, 2024, 1(6): 31-35.

[3] 黄东方. 大型矿山发展时代技术应对方法的探讨[J]. 水泥技术, 2024, 1(5): 76-81.
[4] 李铭哲, 杜鑫, 秦中华, 聂文海. 高能振动磨水泥粉磨特性研究[J]. 水泥技术, 2024, 1(5): 59-64.
[5] 薛承志, 张林菊, 李东, 王文清, 孙志鹏. 6 000t/d水泥熟料生产线烧成系统节能降耗技术改造[J]. 水泥技术, 2024, 1(5): 31-35.
[6] 樊华.

辊压机生料终粉磨系统的优化与调试 [J]. 水泥技术, 2024, 1(4): 9-13.

[7] 郭丹阳, 李建会, 武玉涛. HRM3400B生料立磨的节能改造[J]. 水泥技术, 2024, 1(3): 27-31.
[8] 安卫军, 银建军, 滑松, 刘迪, 彭凌云.

TRMK5041水泥立磨粉磨系统优化升级 [J]. 水泥技术, 2024, 1(2): 13-18.

[9] 张亮, 魏红旗. 水泥粉磨系统的节能降耗实践[J]. 水泥技术, 2024, 1(2): 62-66.
[10] 桑圣欢, 闫伟, 罗超, 吴涛, 胡正夏 .

燃烧无烟煤水泥熟料生产线高效SNCR应用实例 [J]. 水泥技术, 2023, 1(6): 55-59.

[11] 徐文强, 卢琼琼, 曹昊. 生料辊压机终粉磨系统问题分析与优化方案[J]. 水泥技术, 2023, 1(5): 24-28.
[12] 谢文虎. 提升水泥技术装备运行能效水平的探索实践[J]. 水泥技术, 2023, 1(5): 33-37.
[13] 梁乾, 陶从喜, 邓乾, 胡斯亮, 何明海. 5 000t/d水泥熟料生产线烧成系统节能降耗改造[J]. 水泥技术, 2023, 1(4): 55-59.
[14] 王海, 胡晓东, 胥瀚, 王双军. ATOX50生料辊磨的节能降耗升级改造[J]. 水泥技术, 2023, 1(3): 56-60.
[15] 陈艺芳, 谷德明, 张向阳. 球磨机系统的优化改造[J]. 水泥技术, 2023, 1(1): 35-42.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview