Please wait a minute...
水泥技术, 2024, 1(5): 76-81    doi: 10.19698/j.cnki.1001-6171.20245076
  矿山技术 本期目录 | 过刊浏览 | 高级检索 |
大型矿山发展时代技术应对方法的探讨
浙江交通资源投资集团有限公司,浙江  杭州  310020
Exploration on Technological Countermeasures for the Development of Large-scale Mines in the Era#br#
Zhejiang Communications Resources Investment Group Co., Ltd. , Hangzhou Zhejiang 310020, China
下载:  PDF (1147KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于年产超1 000万吨的大型水泥原料矿山和砂石原料矿山具有投资额大、运营费用高,矿区占地面积大、开采深度高,开采技术条件复杂,矿石质量变化大,对周边环境及配套条件要求高等特点,结合大型矿山的设计,提出了大型矿山前期矿点的选择应充分评价矿区及周边环境、矿石品质、矿山储量折减程度、矿山地质条件、开采条件、可综合利用资源等重要技术因素;同时,应对大型矿山进行合理分区开采规划、合理平衡采矿与剥离的超前关系、合理选择开拓运输系统、科学确定溜井平硐系统参数、合理配置开采设备、充分利用采空区排废、合理设计排废场等节能降耗措施,为大型矿山建设提供了技术应对方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄东方
关键词:  大型矿山  技术特点  矿点选择  节能降耗    
Abstract: Large-scale cement raw material mines and sand-gravel raw material mines with an annual output of more than 10 million tons have the characteristics of large investment, high operating costs, large mining area, high mining depth, complex mining technical conditions, large changes in ore quality, and high requirements for surrounding environment and supporting conditions. Combined with the design of large-scale mines, it is proposed that the selection of large mines in the early stage should fully evaluate the important technical factors such as mining area and surrounding environment, ore quality, mine reserves reduction, mine geological conditions, mining conditions, and comprehensive utilization of resources. At the same time, it is necessary to carry out reasonable mining by areas,reasonably balance the advanced relationship between mining and stripping, reasonably select the development and transportation system, scientifically determine the parameters of the chute system, rationally allocate mining equipment, make full use of mining pit with waste filling, and rationally design waste dumps, which provide technical measures for large mine construction.
Key words:  large-scale mines    technical features    mining area selection    energy saving
收稿日期:  2024-05-24                出版日期:  2024-09-25      发布日期:  2024-09-25      整期出版日期:  2024-09-25
ZTFLH:  TD804  
引用本文:    
黄东方. 大型矿山发展时代技术应对方法的探讨[J]. 水泥技术, 2024, 1(5): 76-81.
HUANG Dongfang. Exploration on Technological Countermeasures for the Development of Large-scale Mines in the Era#br#. Cement Technology, 2024, 1(5): 76-81.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20245076  或          http://www.cemteck.com/CN/Y2024/V1/I5/76
[1] 赵景顺, 李川, 王明治.

双圈流水泥粉磨系统节能降耗优化调整实践 [J]. 水泥技术, 2024, 1(6): 20-26.

[2] 荣亚坤, 杨蕾, 邓荣娟, 王文清.

先进热工技术装备及其在万吨水泥生产线的应用 [J]. 水泥技术, 2024, 1(6): 31-35.

[3] 李铭哲, 杜鑫, 秦中华, 聂文海. 高能振动磨水泥粉磨特性研究[J]. 水泥技术, 2024, 1(5): 59-64.
[4] 薛承志, 张林菊, 李东, 王文清, 孙志鹏. 6 000t/d水泥熟料生产线烧成系统节能降耗技术改造[J]. 水泥技术, 2024, 1(5): 31-35.
[5] 水沛, 范威, 谢传东, 殷腾飞. 球磨机能耗和研磨效率离散元数值仿真设计优化[J]. 水泥技术, 2024, 1(5): 36-41.
[6] 樊华.

辊压机生料终粉磨系统的优化与调试 [J]. 水泥技术, 2024, 1(4): 9-13.

[7] 郭丹阳, 李建会, 武玉涛. HRM3400B生料立磨的节能改造[J]. 水泥技术, 2024, 1(3): 27-31.
[8] 安卫军, 银建军, 滑松, 刘迪, 彭凌云.

TRMK5041水泥立磨粉磨系统优化升级 [J]. 水泥技术, 2024, 1(2): 13-18.

[9] 张亮, 魏红旗. 水泥粉磨系统的节能降耗实践[J]. 水泥技术, 2024, 1(2): 62-66.
[10] 桑圣欢, 闫伟, 罗超, 吴涛, 胡正夏 .

燃烧无烟煤水泥熟料生产线高效SNCR应用实例 [J]. 水泥技术, 2023, 1(6): 55-59.

[11] 徐文强, 卢琼琼, 曹昊. 生料辊压机终粉磨系统问题分析与优化方案[J]. 水泥技术, 2023, 1(5): 24-28.
[12] 谢文虎. 提升水泥技术装备运行能效水平的探索实践[J]. 水泥技术, 2023, 1(5): 33-37.
[13] 梁乾, 陶从喜, 邓乾, 胡斯亮, 何明海. 5 000t/d水泥熟料生产线烧成系统节能降耗改造[J]. 水泥技术, 2023, 1(4): 55-59.
[14] 王海, 胡晓东, 胥瀚, 王双军. ATOX50生料辊磨的节能降耗升级改造[J]. 水泥技术, 2023, 1(3): 56-60.
[15] 陈学勇, 陈廷伟, 钱伟, 许龙旭, 庞小平. 5 500t/d水泥熟料生产线烧成系统的技术改造[J]. 水泥技术, 2022, 1(4): 15-20.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview