Please wait a minute...
水泥技术, 2025, 1(1): 35-40    doi: 10.19698/j.cnki.1001-6171.20251035
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
TRMS 45.2立磨生产超细矿渣粉的调试实践
天津水泥工业设计研究院有限公司,天津  300400
Debugging Practice of TRMS 45.2 Vertical Mill to  Produce Ultrafine Slag Powder
Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China
下载:  PDF (56019KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 超细矿渣粉活性优异,是混凝土配制的重要组分之一,为了满足TRMS 45.2矿渣立磨粉磨超细矿渣粉的生产需要,对其进行了技术改造。介绍了TRMS 45.2矿渣立磨粉磨工艺、主机配置,改造时选粉机采用高效笼形转子和新型静叶片结构,研磨区域调整了磨盘衬板角度、辊套角度、辊套圆角大小、挡料圈高度和风环面积,改造后进行了生产调试。分析了生产调试过程中遇到的磨机振动较大、生产稳定性较差、成品比表面积不达标等问题,以及调试过程中磨辊工作压力、选粉机转速、磨机振动和料层厚度、磨内风温和风量、磨内喷水等运行参数对生产的影响以及参数的确定,通过更换受损磨辊摇臂轴承,调整生产工艺参数,使系统电耗降低为~64kW·h/t,实现了超细矿渣粉成品产量60t/h、比表面积≥600m2/kg且生产运行稳定的改造目标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡晓亮
关键词:  矿渣立磨  超细矿渣粉  比表面积  工艺参数  生产调试    
Abstract: Ultrafine slag powder exhibits superior reactivity and is a critical component in concrete preparation. To meet the production requirements of TRMS 45.2 vertical roller mill slag grinding ultrafine slag powder, a technical transformation was implemented. This paper introduces the grinding process and main equipment configuration of the TRMS 45.2 slag vertical roller mill. During the transformation, high-efficiency cage rotors and an innovative static blade structure were adopted. The grinding area adjustments included modifying the liner plate angle, roller sleeve angle, roller sleeve corner radius, retaining ring height, and air ring area. Issues such as significant mill vibration, poor production stability, and non-compliant specific surface area of finished products encountered during production and commissioning were analyzed. Additionally, the influence of operational parameters including mill roller working pressure, powder separator speed, mill vibration, material layer thickness, mill air temperature, and mill air volume on production performance and parameter determination was evaluated. By optimizing the production process parameters, system power consumption was reduced to approximately 64kW·h/t, achieving transformation goals of producing 60t/h of ultrafine slag powder with a specific surface area of at least 600m2/kg and ensuring stable production operations.
Key words:  slag vertical mill    ultrafine slag powder    specific surface area    process parameters    production debugging
收稿日期:  2024-09-04                出版日期:  2025-01-25      发布日期:  2025-02-10      整期出版日期:  2025-01-25
ZTFLH:  TQ172.632.5  
引用本文:    
蔡晓亮. TRMS 45.2立磨生产超细矿渣粉的调试实践[J]. 水泥技术, 2025, 1(1): 35-40.
CAI Xiaoliang. Debugging Practice of TRMS 45.2 Vertical Mill to  Produce Ultrafine Slag Powder. Cement Technology, 2025, 1(1): 35-40.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20251035  或          http://www.cemteck.com/CN/Y2025/V1/I1/35
[1] 蔡文举. 水泥颗粒级配分析的实践[J]. 水泥技术, 2019, 1(5): 56-58.
[2] 蔡文举.
比表面积测试仪的影响因素及校正方法
[J]. 水泥技术, 2019, 1(4): 49-52.
[3] 魏灿, 俞利涛, 童睿, 王纯良.
水泥粉磨智能优化控制系统的应用
[J]. 水泥技术, 2019, 1(3): 33-39.
[4] 杜鑫, 宋留庆, 贺孝一, 豆海建, 秦中华, 张明飞, 王维莉.
不同混合材对水泥辊磨产品比表面积的影响
[J]. 水泥技术, 2018, 1(5): 68-72.
[5] 卓瑞锋, 张召述, 夏举佩, 陶敏龙. 预活化粉煤灰作混合材的研究[J]. 水泥技术, 2010, 1(1): 25-28.
[6] 刘长旺, 余锦辉.
分解炉仿真技术在水泥生产调试中的初步研究
[J]. 水泥技术, 2009, 1(6): 42-44.
[7] 杨瑞海, 陆文雄, 余淑华, 李柯, 李小亮.
高效矿渣复合助磨剂的试验研究
[J]. 水泥技术, 2008, 1(2): 75-78.
[8] 杨凤玲, 严 生.
低温合成煤矸石水泥工艺参数的试验研究
[J]. 水泥技术, 2005, 1(5): 23-26.
[9] 高阳, 李健生, 霍碧莉.
不同助磨剂对水泥粉磨效率的影响
[J]. 水泥技术, 2005, 1(3): 69-71.
[10] 柴星腾, 曾 荣, 聂文海.
TRM生料辊磨系统的设计选型和生产调试
[J]. 水泥技术, 2005, 1(3): 36-40.
[11] 高阳, 李健生, 霍碧莉. 不同助磨剂对水泥粉磨效率的影响[J]. 水泥技术, 2004, 1(6): 30-32.
[12] 韩仲琦. 水泥粒度的表征与评价[J]. 水泥技术, 2002, 1(增刊): 3-6.
[13] 戴少生, 王旦容, 奚安, 李泉泉, 臧人立, 唐星坤 . Sp型倒悬挂细碎颚式破碎机的结构参数优化(上)[J]. 水泥技术, 2002, 1(2): 19-22.
[14] 赵东镐, 王雪晶. 增钙渣和混合材与水泥比表面积的关系[J]. 水泥技术, 2001, 1(5): 66-68.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview