Please wait a minute...
水泥技术, 2025, 1(1): 69-74    doi: 10.19698/j.cnki.1001-6171.20251069
  实验研究 本期目录 | 过刊浏览 | 高级检索 |
甲烷干重整Ni催化剂失活分析
天津水泥工业设计研究院有限公司,天津  300400
Deactivation Analysis of Ni-based Catalyst for DRM
Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China 
下载:  PDF (4827KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲烷干重整(Dry Reforming of Methane,DRM)技术是CO2资源化利用的技术之一,Ni基催化剂的应用可以降低DRM反应的能量。分析了DRM反应过程中Ni基催化剂的反应机理,以及Ni基催化剂表面积碳、金属活性组分烧结、硫中毒等导致Ni基催化剂失活的原因。综述了当前提高Ni基催化剂催化性能的研究成果,展望了未来开发具有高稳定性、高选择性、高活性和高抗积碳性能的Ni基催化剂的研究方向,为Ni基催化剂在DRM反应中的工业化应用提供了理论指导和研究依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李帅帅
马娇媚
赵亮
杨欢迎
王佳硕
关键词:  甲烷干重整  催化剂  失活分析  CO2减排  甲烷    
Abstract: Dry Reforming of Methane (DRM) technology is one of the technologies for CO2 resource utilization, the application of Ni-based catalyst can reduce the energy of DRM reaction. The research analyzes the reaction mechanism of Ni-based catalysts during the DRM reaction process, as well as the cause of the reasons for the loss of Ni-based catalysts such as carbon, metal activated component sintering, sulfur poisoning, etc. This paper describes the research results of currently improving the catalytic performance of Ni-based catalysts, and provides a research direction for the future development of Ni-based catalysts with high stability, selectivity, activity, and resistance to carbon deposition. And it provides theoretical guidance and research basis for the industrial application of Ni-based catalyst in DRM.
Key words:  dry reforming of methane (DRM)    catalyst    inactivation analysis    CO2 emission reduction    methane
收稿日期:  2024-06-20                出版日期:  2025-01-25      发布日期:  2025-01-25      整期出版日期:  2025-01-25
ZTFLH:  TQ426.65  
基金资助: 

国家重点研发计划项目(2022YFA1504703

引用本文:    
李帅帅, 马娇媚, 赵亮, 杨欢迎, 王佳硕. 甲烷干重整Ni催化剂失活分析[J]. 水泥技术, 2025, 1(1): 69-74.
LI Shuaishuai, MA Jiaomei, ZHAO Liang, YANG Huanying, WANG Jiashuo. Deactivation Analysis of Ni-based Catalyst for DRM. Cement Technology, 2025, 1(1): 69-74.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20251069  或          http://www.cemteck.com/CN/Y2025/V1/I1/69
[1] 孔睿睿, 葛楠楠, 张磊, 高翔, 齐怀莲. 水泥窑协同处置废FCC催化剂的生产实践[J]. 水泥技术, 2024, 1(2): 71-77.
[2] 赵琳, 韩辉, 杜亮波, 杨欢迎, 彭学平. 国内外CO-SCR脱硝催化剂研究进展[J]. 水泥技术, 2023, 1(4): 19-27.
[3] 彭小平, 王永刚, 程兆环, 唐新宇. 水泥窑SCR脱硝催化剂磨损机理分析及解决措施[J]. 水泥技术, 2023, 1(3): 32-37.
[4] 赵琳, 刘庆岭, 胡芝娟, 王永刚, 程兆环.
提高Mn系低温脱硝催化剂抗硫抗水性能的国内外研究概述
[J]. 水泥技术, 2020, 1(2): 66-72.
[5] 刘瑞芝, 王文荟, 韩磊磊, 王秀龙, 赵艳妍.
燃煤催化剂在高热值烟煤水泥厂的应用
[J]. 水泥技术, 2018, 1(4): 26-29.
[6] 刘瑞芝, 陈新智, 李霞.
燃煤催化剂对混煤催化燃烧的研究与应用
[J]. 水泥技术, 2013, 1(4): 27-30.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview