Please wait a minute...
水泥技术, 2022, 1(2): 40-45    doi: 10.19698/j.cnki.1001-6171.20222040
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
脱硝分解炉的设计及实际应用
卫辉市天瑞水泥有限公司,河南  新乡  453100
Design and Practical Application of Denitration Calciner
Weihui Tianrui Cement Co., Ltd. , Xinxiang Henan 453100, China
下载:  PDF (3796KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
对水泥烧成系统的氮氧化物形成机理进行了分析,形成了脱硝分解炉的设计思路。脱硝分解炉的设计思路为,通过提高三次风管高度,降低分解炉喂煤点位置,在中间形成一个缺氧区域,在分解炉下部创建脱硝还原区,最终将回转窑内生成的氮氧化物全部还原。实际改造项目显示,脱硝分解炉结合SNCR系统,可将系统氮氧化物排放浓度控制在50mg/Nm3以下,同时可大幅减少氨水使用量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵睿敏
于永现
凌金辉
闫艳选
关键词:  分解炉  氮氧化物  超低排放    
Abstract: 
The formation mechanism of nitrogen oxides was analyzed, and the design idea of denitration calciner was formed. The design idea of denitration calciner is to increase the height of the tertiary air duct, reduce the position of coal feeding point in the calciner, form an anoxic area in the middle, and create a denitration reduction area in the lower part of the calciner, and finally reduce all the nitrogen oxides generated in the rotary kiln. The actual transformation project shows that the emission concentration of nitrogen oxides combined with SNCR system can be controlled within 50mg/Nm3, and the consumption of ammonia water is greatly reduced.
Key words:  calciner    nitrogen oxides    ultra-low emission
收稿日期:  2021-12-22                出版日期:  2022-03-25      发布日期:  2022-03-25      整期出版日期:  2022-03-25
ZTFLH:  TQ172.622.29  
引用本文:    
赵睿敏, 于永现, 凌金辉, 闫艳选. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022, 1(2): 40-45.
ZHAO Ruimin, YU Yongxian, LING Jinhui, YAN Yanxuan. Design and Practical Application of Denitration Calciner. Cement Technology, 2022, 1(2): 40-45.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20222040  或          http://www.cemteck.com/CN/Y2022/V1/I2/40
[1] 黄彬, 孙文博. 分级燃烧技术在5 000t/d熟料生产线的应用实践[J]. 水泥技术, 2022, 1(2): 46-49.
[2] 刘宏超. 水泥回转窑窑尾烟气超低排放的技术改造[J]. 水泥技术, 2022, 1(1): 18-22.
[3] 邵磊. 水泥窑氮氧化物超低排放的技术改造[J]. 水泥技术, 2021, 1(5): 47-50.
[4] 董蕊, 陈昌华, 李宁. 3 000t/d水泥熟料生产线NOx的超低排放改造[J]. 水泥技术, 2021, 1(4): 43-46.
[5] 逯志军, 刘红宁, 杨利明, 石岩.
升级改造燃烧器降低氮氧化物排放
[J]. 水泥技术, 2021, 1(2): 52-54.
[6] 张涛, 章园, 李宇.
长袋低压脉冲袋除尘器在水泥磨粉尘超低排放中的应用
[J]. 水泥技术, 2021, 1(1): 46-49.
[7] 张少明, 刘宏保, 张耀智, 洪宝. 4 500t/d熟料生产线超低排放技改措施及效果[J]. 水泥技术, 2021, 1(1): 50-56.
[8] 张滨, 郎济涵.
SNCR脱硝系统技术改造实践
[J]. 水泥技术, 2020, 1(6): 23-26.
[9] 唐新宇.
沸腾干燥窑氮氧化物减排技术发展现状
[J]. 水泥技术, 2020, 1(6): 27-29.
[10] 赵丹辉.
浅析水泥行业氮氧化物控制技术
[J]. 水泥技术, 2020, 1(5): 24-27.
[11] 赵琳, 刘庆岭, 胡芝娟, 王永刚, 程兆环.
提高Mn系低温脱硝催化剂抗硫抗水性能的国内外研究概述
[J]. 水泥技术, 2020, 1(2): 66-72.
[12] 潘伟东, 张继雄.
智能高效脱硝系统在水泥生产上的应用
[J]. 水泥技术, 2020, 1(2): 79-81.
[13] 朱永胜.
回转窑连续出现黄心料包心料的工艺调整
[J]. 水泥技术, 2020, 1(1): 97-98.
[14] 马娇媚, 彭学平, 代中元, 谌佳荣, 刘瑞芝.
水泥生产燃用石油焦自脱硝技术的实践
[J]. 水泥技术, 2019, 1(6): 19-25.
[15] 张松, 王作杰, 葛媛媛.
超高温除尘技术在水泥行业应用的探讨
[J]. 水泥技术, 2019, 1(5): 90-93.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview