Please wait a minute...
水泥技术, 2022, 1(6): 77-82    doi: 10.19698/j.cnki.1001-6171.20226077
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
危险固体废弃物对水泥窑工况的影响
济源海中环保科技有限责任公司,河南  济源  454650
Effect of Co-processing Hazardous Solid Waste with Cement Kiln Conditions
Jiyuan Haizhong Environmental Protection Technology Co., Ltd. ,
Jiyuan Henan 454650, China
下载:  PDF (2331KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
介绍了水泥窑协同处置危固废(危险固体废弃物)的预处理固态系统工艺流程,分析了危固废的水分、热值及处置量与水泥窑风、煤、一氧化碳及氮氧化物排放的相关关系,以实际工业试验验证了危固废入窑对水泥窑能耗及氮氧化物排放的影响。结果表明,窑喂煤量是影响氮氧化物排放的主要原因,窑喂煤量随着危固废热值的增加而逐渐降低,除尘灰和大修渣入窑处置,有助于降低氮氧化物的排放量。危固废月处置量为1 000t时,实际减煤量达3.21kg/t.cl。在实际运行过程中,危固废处置量>4t/h时,为避免窑内产生还原气氛,入窑危固废氯离子含量应<1%,碱含量<4%,此控制指标下窑系统氯离子循环富集率平均为51%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉楷
朱志领
关键词:  水泥窑协同处置  危固废  氮氧化物  氯离子  循环富集率    
Abstract: 
In this study, it introduced the process flow of solid state system for the pretreatment of hazardous solid waste in cement kiln. Meanwhile, it analyzed the relationship between the moisture, calorific value and disposal amount of hazardous solid waste and the cement kiln gas, coal, carbon monoxide and nitrogen oxide, to reveal the effect of hazardous solid waste in kiln on energy consumption and nitrogen oxide emissions in cement kiln by practical industrial test. Results showed that the kiln coal feeding is the main reason for the impact of nitrogen oxide emissions, and the kiln coal feeding amount gradually decreased with the increased of hazardous solid waste calorific value. The emission of nitrogen oxide can be effectively decreased by the disposal of overhaul slag and precipitator dust in cement kiln. When the monthly disposal amount of hazardous solid waste is 1 000t, the standard coal consumption of clinker was reduced by 3.21kg/t. In the actual operation process, in order to achieve a disposal capacity of 4t/h without creating a reducing atmosphere,the content of hazardous solid waste chloride ion in the kiln should be controlled below 1% and the alkali content should be controlled below 4%. Under this control index, the average enrichment rate of chloride cycle in kiln system is 51%. 
Key words:  cement kiln coordinated disposal    hazardous solid waste    nitrogen oxides    chloride ion    cyclic enrichment rate
收稿日期:  2022-04-24      修回日期:  2022-11-25           出版日期:  2022-11-25      发布日期:  2022-11-25      整期出版日期:  2022-11-25
ZTFLH:  TQ172.44  
引用本文:    
王玉楷, 朱志领. 危险固体废弃物对水泥窑工况的影响[J]. 水泥技术, 2022, 1(6): 77-82.
WANG Yukai, ZHU Zhiling. Effect of Co-processing Hazardous Solid Waste with Cement Kiln Conditions. Cement Technology, 2022, 1(6): 77-82.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20226077  或          http://www.cemteck.com/CN/Y2022/V1/I6/77
[1] 陈龙, 冯云, 郑金召, 李榛. 协同处置危固废过程中熟料频繁结球的分析处置[J]. 水泥技术, 2023, 1(1): 53-61.
[2] 赵睿敏, 于永现, 凌金辉, 闫艳选. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022, 1(2): 40-45.
[3] 邵磊. 水泥窑氮氧化物超低排放的技术改造[J]. 水泥技术, 2021, 1(5): 47-50.
[4] 逯志军, 刘红宁, 杨利明, 石岩.
升级改造燃烧器降低氮氧化物排放
[J]. 水泥技术, 2021, 1(2): 52-54.
[5] 张滨, 郎济涵.
SNCR脱硝系统技术改造实践
[J]. 水泥技术, 2020, 1(6): 23-26.
[6] 唐新宇.
沸腾干燥窑氮氧化物减排技术发展现状
[J]. 水泥技术, 2020, 1(6): 27-29.
[7] 赵丹辉.
浅析水泥行业氮氧化物控制技术
[J]. 水泥技术, 2020, 1(5): 24-27.
[8] 赵琳, 刘庆岭, 胡芝娟, 王永刚, 程兆环.
提高Mn系低温脱硝催化剂抗硫抗水性能的国内外研究概述
[J]. 水泥技术, 2020, 1(2): 66-72.
[9] 韩仲琦.
国外水泥工业消纳废弃物的现状(下)
[J]. 水泥技术, 2020, 1(1): 57-61.
[10] 韩仲琦.
国外水泥工业消纳废弃物的现状(上)
[J]. 水泥技术, 2019, 1(6): 84-90.
[11] 唐多久, 汪涛.
自适应SNCR技术在水泥厂实现氮氧化物超低排放
[J]. 水泥技术, 2019, 1(4): 69-73.
[12] 王道斌, 于浩波, 吕威.
NSCI 5 000t/d水泥生产线脱硫工程的水平衡探讨
[J]. 水泥技术, 2019, 1(4): 74-78.
[13] 嵇磊, 赵旭红, 曹培, 赵宇, 孙鹤, 黄永胜, 韦娟, 张广芳, 俞刚, 吴德厚, . 水泥窑协同处置危险废物典型污染物在水泥熟料中的固化研究[J]. 水泥技术, 2018, 1(2): 31-35.
[14] 李宁, 赵亮.
回转窑燃烧器降低氮氧化物机理分析
[J]. 水泥技术, 2016, 1(6): 40-42.
[15] 尹国明.
水泥企业氮氧化物减排的两种技术措施及实践
[J]. 水泥技术, 2016, 1(4): 76-77.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview