Please wait a minute...
水泥技术, 2024, 1(5): 59-64    doi: 10.19698/j.cnki.1001-6171.20245059
  实验研究 本期目录 | 过刊浏览 | 高级检索 |
高能振动磨水泥粉磨特性研究
天津水泥工业设计研究院有限公司,天津  300400
Study on Cement Grinding Characteristics of High-energy Vibrating Mill
Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China
下载:  PDF (1762KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究高能振动磨制备水泥的粉磨特性,以比表面积1 850cm2/g的水泥半成品为实验原料,研究了高能振动磨粉磨时间、料球比、研磨体尺寸及填充率等关键控制参数对水泥比表面积和粉磨电耗的影响。结果表明:高能振动磨具有较好的水泥粉磨能力,其粉磨效率随着粉磨时间的延长而逐渐降低,水泥比表面积与粉磨时间的对数存在良好的线性关系。在兼顾粉磨效率与生产能力的同时,高能振动磨料球比和研磨体填充率均存在适宜的关键参数区间,研磨体尺寸微型化可进一步提高其细磨能力。在料球比8%、钢球直径?6mm、填充率80%的实验条件下,高能振动磨粉磨效率最高,粉磨5min时水泥比表面积可达3 486cm2/g,粉磨电耗为7.9kW·h/t。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李铭哲
杜鑫
秦中华
聂文海
关键词:  高能振动磨  料球比  研磨体填充率  节能降耗    
Abstract: In order to explore the cement grinding characteristics of high-energy vibrating mill, the semi-finished cement with a specific surface area of 1 850cm2/g was used as the raw material. The control parameters such as grinding time, mass ratio of cement-to-ball, specification and filling rate of the ball mill on the specific surface area of products and power consumption of vibration were studied. The results show that the high-energy vibrating mill has a good grinding grind ability, the grinding efficiency decreased with the increasing of grinding time, and there is a good linear relationship between the logarithm of cement specific surface area and grinding time. While taking into account the grinding efficiency and production capacity, there is a suitable key parameter intervals existing for both mass ratio of cement-to-ball and  filling rate. The miniaturization of the ball mill size can improve the fine grinding capacity. Under the experimental conditions of 8% mass ratio of cement-to-ball, 80% filling rate with the ?6mm steel ball, the specific surface area of product can reach 3 486cm2/g after grinding for 5min. The grinding power consumption is 17.9kW·h/t.
Key words:  high-energy vibrating mill    mass ratio of cement-to-ball    filling rate of the ball mill    reduction of the energy consumption
收稿日期:  2024-06-27                出版日期:  2024-09-25      发布日期:  2024-09-25      整期出版日期:  2024-09-25
ZTFLH:  TQ172.632.7  
引用本文:    
李铭哲, 杜鑫, 秦中华, 聂文海. 高能振动磨水泥粉磨特性研究[J]. 水泥技术, 2024, 1(5): 59-64.
LI Mingzhe, DU Xin, QIN Zhonghua, NIE Wenhai. Study on Cement Grinding Characteristics of High-energy Vibrating Mill. Cement Technology, 2024, 1(5): 59-64.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20245059  或          http://www.cemteck.com/CN/Y2024/V1/I5/59
[1] 赵景顺, 李川, 王明治.

双圈流水泥粉磨系统节能降耗优化调整实践 [J]. 水泥技术, 2024, 1(6): 20-26.

[2] 荣亚坤, 杨蕾, 邓荣娟, 王文清.

先进热工技术装备及其在万吨水泥生产线的应用 [J]. 水泥技术, 2024, 1(6): 31-35.

[3] 黄东方. 大型矿山发展时代技术应对方法的探讨[J]. 水泥技术, 2024, 1(5): 76-81.
[4] 薛承志, 张林菊, 李东, 王文清, 孙志鹏. 6 000t/d水泥熟料生产线烧成系统节能降耗技术改造[J]. 水泥技术, 2024, 1(5): 31-35.
[5] 水沛, 范威, 谢传东, 殷腾飞. 球磨机能耗和研磨效率离散元数值仿真设计优化[J]. 水泥技术, 2024, 1(5): 36-41.
[6] 樊华.

辊压机生料终粉磨系统的优化与调试 [J]. 水泥技术, 2024, 1(4): 9-13.

[7] 郭丹阳, 李建会, 武玉涛. HRM3400B生料立磨的节能改造[J]. 水泥技术, 2024, 1(3): 27-31.
[8] 安卫军, 银建军, 滑松, 刘迪, 彭凌云.

TRMK5041水泥立磨粉磨系统优化升级 [J]. 水泥技术, 2024, 1(2): 13-18.

[9] 张亮, 魏红旗. 水泥粉磨系统的节能降耗实践[J]. 水泥技术, 2024, 1(2): 62-66.
[10] 桑圣欢, 闫伟, 罗超, 吴涛, 胡正夏 .

燃烧无烟煤水泥熟料生产线高效SNCR应用实例 [J]. 水泥技术, 2023, 1(6): 55-59.

[11] 徐文强, 卢琼琼, 曹昊. 生料辊压机终粉磨系统问题分析与优化方案[J]. 水泥技术, 2023, 1(5): 24-28.
[12] 谢文虎. 提升水泥技术装备运行能效水平的探索实践[J]. 水泥技术, 2023, 1(5): 33-37.
[13] 梁乾, 陶从喜, 邓乾, 胡斯亮, 何明海. 5 000t/d水泥熟料生产线烧成系统节能降耗改造[J]. 水泥技术, 2023, 1(4): 55-59.
[14] 王海, 胡晓东, 胥瀚, 王双军. ATOX50生料辊磨的节能降耗升级改造[J]. 水泥技术, 2023, 1(3): 56-60.
[15] 陈学勇, 陈廷伟, 钱伟, 许龙旭, 庞小平. 5 500t/d水泥熟料生产线烧成系统的技术改造[J]. 水泥技术, 2022, 1(4): 15-20.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview