Please wait a minute...
水泥技术, 2023, 1(6): 13-17    doi: 10.19698/j.cnki.1001-6171.20236013
  装备技术 本期目录 | 过刊浏览 | 高级检索 |

在线型梯度燃烧分解炉及其配套燃烧器的开发与应用

1天津水泥工业设计研究院有限公司,天津  300400; 2 浙江大学,浙江  杭州  310058

Development and Application of Online Gradient Calciner and Supporting Burner

1. Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China;  2. Zhejiang University, Hangzhou Zhejiang 310058, China 
下载:  PDF (10687KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

梯度燃烧技术通过多级调控分解炉进风、喂料、喷煤方式,将分解炉炉膛空间进行功能分区,建立“强贫氧还原区—弱贫氧还原区—燃烬区”的燃烧气氛环境,从而实现NOx源头减排。本文开发了在线型梯度燃烧分解炉及配套旋流分散燃烧器,可将强还原区停留时间增加至2.5~3.0s,提升了自脱硝效果。该技术在滕州东郭生产线应用后,自脱硝效率>70%,分解炉出口稳定控制NOx260mg/Nm3,窑尾NOx排放浓度30~50mg/Nm3,熟料氨水用量<2.5kg/t,实现了水泥窑烟气NOx的低成本超低排放。


服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈昌华
彭学平
俞为民
金周政
郑成航
关键词:  梯度燃烧  分解炉  旋流叶片  源头减排  超低排放    
Abstract: 

Gradient combustion technology divides the furnace space of the calciner into functional partitions through multi-stage control of the air inlet, feeding, and coal injection, establishing a combustion atmosphere environment of "strong lean oxygen reduction zone - weak lean oxygen reduction zone - combustion zone", thereby achieving source emission reduction of NOX. This article develops an online gradient combustion calciner and a supporting swirl dispersion burner, which can increase the residence time of the strong reduction zone to 2.5~3.0 seconds and improve the self denitrification effect. The application of this technology in the Tengzhou Dongguo production line shows that, the self denitrification efficiency can reach over 70%, the stable control of NOX at the outlet of the calciner is below 260mg/Nm3, and the NOX emission control of the chimney gas is 30~50mg/Nm3. the dosage of ammonia water used in the clinker production is less than 2.5kg/t, achieving low-cost and ultra-low emission of NOX in cement kiln flue gas.


Key words:  gradient combustion    calciner    swirl blade    source emission reduction    ultra low emissions
收稿日期:  2023-09-14      修回日期:  2023-11-25           出版日期:  2023-11-25      发布日期:  2023-11-25      整期出版日期:  2023-11-25
ZTFLH:  TQ172.622.26   
     
引用本文:    
陈昌华, 彭学平, 俞为民, 金周政, 郑成航.

在线型梯度燃烧分解炉及其配套燃烧器的开发与应用 [J]. 水泥技术, 2023, 1(6): 13-17.
CHEN Changhua, PENG Xueping, YU Weimin, JIN Zhouzheng, ZHENG Chenghang.

Development and Application of Online Gradient Calciner and Supporting Burner . Cement Technology, 2023, 1(6): 13-17.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20236013  或          http://www.cemteck.com/CN/Y2023/V1/I6/13
[1] 赵睿敏, 于永现, 凌金辉, 闫艳选. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022, 1(2): 40-45.
[2] 黄彬, 孙文博. 分级燃烧技术在5 000t/d熟料生产线的应用实践[J]. 水泥技术, 2022, 1(2): 46-49.
[3] 张少明, 刘宏保, 张耀智, 洪宝. 4 500t/d熟料生产线超低排放技改措施及效果[J]. 水泥技术, 2021, 1(1): 50-56.
[4] 朱永胜.
回转窑连续出现黄心料包心料的工艺调整
[J]. 水泥技术, 2020, 1(1): 97-98.
[5] 马娇媚, 彭学平, 代中元, 谌佳荣, 刘瑞芝.
水泥生产燃用石油焦自脱硝技术的实践
[J]. 水泥技术, 2019, 1(6): 19-25.
[6] 陈昌华, 代中元, 彭学平, 姚国镜.
分解炉梯度燃烧自脱硝技术的研究与工程应用
[J]. 水泥技术, 2019, 1(4): 19-23.
[7] 陈昌华, 马娇媚, 武晓萍, 彭学平, 陶从喜.
印尼海德堡万吨生产线烧成系统设计优化与运行
[J]. 水泥技术, 2019, 1(1): 45-50.
[8] 马娇媚, 陶从喜, 彭学平, 陈昌华.
水泥窑脱硝工艺技术综合评价
[J]. 水泥技术, 2018, 1(2): 77-81.
[9] 师留刚, 杨中强, 夏中清. 水泥分解炉环节优化节能控制系统[J]. 水泥技术, 2016, 1(6): 45-48.
[10] 刘贵新, 陈昌华, 陶从喜, 彭学平, 李亮.
带SLC分解炉的4 000t/d熟料生产线烧成系统技术优化
[J]. 水泥技术, 2016, 1(5): 87-90.
[11] 张凯, 厉惠良, 陶从喜, 彭学平. 分解炉三次风管结构优化研究[J]. 水泥技术, 2015, 1(3): 33-37.
[12] 宋立琮, 王靖.
模糊广义预测控制在水泥分解炉温度控制中的应用
[J]. 水泥技术, 2015, 1(2): 29-30.
[13] 潘丽萍, 周涛. DD分解炉流场仿真分析[J]. 水泥技术, 2012, 1(4): 38-42.
[14] 刘长旺, 余锦辉.
分解炉仿真技术在水泥生产调试中的初步研究
[J]. 水泥技术, 2009, 1(6): 42-44.
[15] 姜丰达, 张志宇.
分解炉改烧高炉煤气的可行性研究
[J]. 水泥技术, 2008, 1(4): 33-34.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview