Please wait a minute...
水泥技术, 2024, 1(1): 39-44    doi: 10.19698/j.cnki.1001-6171.20241039
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
篦冷机中部取风口流场及温度场数值模拟研究
1 中材节能股份有限公司,天津  300499; 2 华北电力大学,河北  保定  071003
Numerical Simulation Study on Temperature Field and Flow Field of the Central Air Intake of a Grate Cooler
1. Sinoma Energy Conservation Ltd, Tianjin 300499, China ;2. North China Electric Power University, Baoding Hebei 071003, China
下载:  PDF (1468KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了篦冷机内水泥熟料与空气的换热机理,并基于国内某5 000t/d水泥熟料生产线实际运行参数,利用多孔介质理论对篦冷机内传热过程进行了数值模拟,建立了篦冷机物理、数学模型,通过Fluent流体计算软件数值模拟研究了篦冷机内部温度场、压力分布、流场分布,重点分析了篦冷机中部取风口的温度与熟料层厚度的关系,根据模拟分析结果合理布置篦冷机各取风口位置及风量分配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王炯
齐树龙
关键词:  篦冷机  取风口  数值模拟  余热发电  节能减排    
Abstract: The heat transfer mechanism between cement clinker and air in a grate cooler was studied, and based on the actual operating parameters of a 5 000t/d cement clinker production line in China, the heat transfer process inside the grate cooler was numerically simulated using porous media theory. A physical and mathematical model of the grate cooler was established, and the temperature field, pressure distribution, and flow field distribution inside the grate cooler were numerically simulated using Fluent fluid calculation software. The relationship between the temperature of the middle air intake of the grate cooler and the thickness of the clinker layer was analyzed in detail. Based on the simulation analysis results, the positions of each air intake of the grate cooler and the distribution of air volume were reasonably arranged.
Key words:  grate cooler    air intake    numerical simulation    waste heat power generation    energy conservation and emission reduction
收稿日期:  2023-06-20                出版日期:  2024-01-25      发布日期:  2024-01-23      整期出版日期:  2024-01-25
ZTFLH:  TQ172.622.4  
引用本文:    
王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
WANG Jiong, QI Shulong. Numerical Simulation Study on Temperature Field and Flow Field of the Central Air Intake of a Grate Cooler. Cement Technology, 2024, 1(1): 39-44.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20241039  或          http://www.cemteck.com/CN/Y2024/V1/I1/39
[1] 邹政. 太阳能光伏电站在水泥厂节能减排中的应用[J]. 水泥技术, 2024, 1(2): 78-81.
[2] 张鑫. 管道应力分析软件AutoPSA中Glif算法报告解读与布管技巧[J]. 水泥技术, 2024, 1(2): 41-49.
[3] 王炯, 齐树龙.

AQC锅炉进风管道保温数值模拟研究 [J]. 水泥技术, 2023, 1(6): 60-67.

[4] 周莹莹, 田博, 向峥, 田哲.

基于水泥厂电能计量系统的新能源发电接入点的选择 [J]. 水泥技术, 2023, 1(6): 82-85.

[5] 甘天锦, 阮黎明. 浅谈LBTF2750型推动式篦式冷却机技术改造[J]. 水泥技术, 2023, 1(5): 62-67.
[6] 丛晓静, 许龙旭, 丛嘉庆, 尤小平. 篦冷机在线监测与智能化控制系统的应用[J]. 水泥技术, 2023, 1(2): 37-.
[7] 李刚健. 高炉煤气燃烧数值模拟在LOMA-MLB热风炉调试中的应用[J]. 水泥技术, 2023, 1(1): 43-50.
[8] 李俊. 余热发电汽轮机真空抽气系统节能改造[J]. 水泥技术, 2022, 1(5): 68-71.
[9] 崔洪坤, 刘志强. 4 500t/d水泥熟料生产线节能降耗优化措施[J]. 水泥技术, 2022, 1(4): 21-26.
[10] 魏振生, 冀猛, 单秀勇, 魏阳. 新型灰斗卸料锁风阀的研发应用[J]. 水泥技术, 2022, 1(3): 73-78.
[11] 侯振光, 许龙旭, 刘占元, 鞠召会, 胡必珍. 5 000t/d水泥熟料生产线篦冷机的升级改造[J]. 水泥技术, 2022, 1(2): 13-17.
[12] 杜佳佳. 旋流器和喷嘴对燃烧器性能影响的数值模拟研究[J]. 水泥技术, 2022, 1(1): 27-34.
[13] 李俊. 余热发电DCS & DEH控制系统改造[J]. 水泥技术, 2022, 1(1): 92-96.
[14] 宋亮亮, 尚丽平, 冯凯, 王安伟. 棒式篦冷机的节能改造[J]. 水泥技术, 2021, 1(6): 32-36.
[15] 侯振光, 张良宏, 杨春, 孟凡星. 配置中置辊式破碎机的第四代篦冷机的工艺设计[J]. 水泥技术, 2021, 1(6): 13-18.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview