Please wait a minute...
水泥技术, 2025, 1(5): 7-12    doi: 10.19698/j.cnki.1001-6171.20255007
  中材国际第三届水泥绿色智能发展大会专题——高端装备 本期目录 | 过刊浏览 | 高级检索 |
基于水泥立磨的低碳分级分别粉磨工艺及工程应用
1 中国建材装备集团有限公司合肥中亚建材装备有限责任公司天津分公司,天津  300133; 2 中国建材装备集团有限公司技术装备研究总院,天津  300133;
Low-carbon Grading and Separate Grinding Process and Engineering Application Based on Cement Vertical Roller Mill
1 CNBM Equipment Group, Hefei Zhongya Building Material Equipment Co., Ltd. Tianjin Branch, Tianjin 300133, China; 2 CNBM Equipment Group, Technology & Equipment Research Academy, Tianjin 300133, China 
下载:  PDF (6152KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于水泥立磨的低碳分级分别粉磨工艺相对于传统混合粉磨工艺,具有熟料系数低、能耗低、碳排放量少、水泥综合性能优等显著优势。本文分析了水泥立磨低碳分级分别粉磨技术基于不同原材料水化活性差异,将原材料分别粉磨至不同粒径再混合制备为成品的作用机理;进行了低碳分级分别粉磨对比试验,重点探讨了矿渣、熟料等不同活性原材料分级粉磨策略;提出了“立磨预粉磨+球磨机终粉磨”联合粉磨和“立磨终粉磨”单独粉磨两种分级分别粉磨工艺方案。工程实践表明,应用水泥立磨的低碳分级分别粉磨工艺,在保持或提升水泥性能的基础上,可使熟料用量降低10%~15%,CO2排放量减少~80kg/t,也可实现比表面积>600m2/kg超细矿渣粉的生产,是推动水泥工业绿色低碳发展的先进生产工艺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡晓亮
杜鑫
滑松
彭凌云
黄雄
关键词:  熟料系数  分级分别粉磨  颗粒级配  节能降碳  绿色低碳    
Abstract: The low-carbon graded separate grinding process based on cement vertical roller mills, compared to traditional mixed grinding processes, offers significant advantages including a lower clinker factor, reduced energy consumption, decreased carbon emissions, and enhanced overall cement performance. This study analyzes the mechanism of the low-carbon graded separate grinding technology, which leverages differences in the hydration activity of various raw materials. It involves grinding raw materials separately to different particle sizes before mixing them to produce the final product. The research focuses on comparative experiments of low-carbon graded separate grinding, investigates the fineness strategies for grinding raw materials with different activities (such as slag, clinker), and proposes two graded grinding process solutions: a combined grinding system ("vertical roller mill pre-grinding + ball mill grinding") and a vertical roller mill finish grinding system. Engineering practices demonstrate that the application of a low-carbon graded separate grinding system based on cement vertical roller mills can reduce clinker consumption by 10%~15% and decrease CO2 emissions by approximately 80kg/t while maintaining or even improving cement performance. This system also enables the production of ultra-fine slag powder with a specific surface area exceeding 600m2/kg, establishing it as an advanced production process promoting green and low-carbon development in the cement industry.
Key words:   clinker factor    grading and separate grinding    particle size distribution    energy saving and carbon reduction    green and low-carbon
收稿日期:  2025-04-29                出版日期:  2025-09-25      发布日期:  2025-09-22      整期出版日期:  2025-09-25
ZTFLH:  TQ172  
  TQ172.632.5  
基金资助: 中国建材集团攻关专项资助(2021HX0405)
作者简介:  蔡晓亮(1982—),男,本科,高级工程师,主要从事立磨设备的开发与设计。E-mail:caixiaoliang@sinoma-tianjin.cn
引用本文:    
蔡晓亮, 杜鑫, 滑松, 彭凌云, 黄雄. 基于水泥立磨的低碳分级分别粉磨工艺及工程应用[J]. 水泥技术, 2025, 1(5): 7-12.
CAI Xiaoliang, DU Xin, HUA Song, PENG Lingyun, HUANG Xiong. Low-carbon Grading and Separate Grinding Process and Engineering Application Based on Cement Vertical Roller Mill. Cement Technology, 2025, 1(5): 7-12.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20255007  或          http://www.cemteck.com/CN/Y2025/V1/I5/7
[1] 刘畅, 李勇. 立磨矿渣粉粒径对水泥胶砂力学性能的影响研究[J]. 水泥技术, 2025, 1(5): 18-23.
[2] 隋明洁, 张江涛, 刘云庆.

以先进技术和装备推动水泥工业绿色发展 [J]. 水泥技术, 2025, 1(4): 1-11.

[3] 周德刚, 邱平, 朱强. 生物质(竹炭)替代燃料在水泥生产中的应用[J]. 水泥技术, 2025, 1(3): 65-70.
[4] 薛承志, 张林菊, 李东, 王文清, 孙志鹏. 6 000t/d水泥熟料生产线烧成系统节能降耗技术改造[J]. 水泥技术, 2024, 1(5): 31-35.
[5] 高为民, 马娇媚, 张伟, 隋明洁, 俞为民. 5 000t/d水泥熟料生产线节能降碳升级改造实践[J]. 水泥技术, 2024, 1(5): 19-25.
[6] 夏静慧, 王巧林.

5G+绿色智能数字化”零碳矿山建设 [J]. 水泥技术, 2024, 1(4): 43-48.

[7] 柳学忠, 周卫兵, 徐保国, 朱教群, 许元正.

水泥半终粉磨系统生产工艺优化改造 [J]. 水泥技术, 2023, 1(6): 41-46.

[8] 马娇媚, 赵亮, 张建国, 王科学. 水泥熟料烧成系统能效提升技术的研究及应用[J]. 水泥技术, 2023, 1(2): 20-.
[9] 马娇媚, 王克东, 隋明洁, 高为民. 万吨级熟料烧成系统节能降碳[J]. 水泥技术, 2023, 1(1): 15-23.
[10] 蔡文举. 水泥颗粒级配分析的实践[J]. 水泥技术, 2019, 1(5): 56-58.
[11] 冯蕾, 王政, 李家和, 张玉珍. 粉磨工艺对水泥性能影响的研究[J]. 水泥技术, 2004, 1(6): 49-51.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[5] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[6] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[7] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[8] WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure[J]. Cement Technology, 2018, 1(1): 83 -88 .
[9] LIU Xudong. How to Execute 60 kV Transmission Line EPC Project[J]. Cement Technology, 2018, 1(1): 89 -91 .
[10] YAO Piqiang, HAN Hui, YU Weimin. Study on Calcining and Preliminary Application of New Low Calcium Cement[J]. Cement Technology, 2018, 1(2): 17 -25 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview