Please wait a minute...
水泥技术, 2025, 1(5): 18-23    doi: 10.19698/j.cnki.1001-6171.20255018
  中材国际第三届水泥绿色智能发展大会专题——高端装备 本期目录 | 过刊浏览 | 高级检索 |
立磨矿渣粉粒径对水泥胶砂力学性能的影响研究
中国建材装备集团有限公司合肥中亚建材装备有限责任公司,安徽  合肥  230601
Study on the Influence of Vertical Roller Mill Grinding Slag Powder Particle Size on the Mechanical Properties of Cement Mortar
CNBM Equipment Group, Hefei Zhongya Building Material Equipment Co., Ltd. , Hefei Anhui 230601, China
下载:  PDF (2763KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 矿渣粉作为原材料生产水泥时,其颗粒粒度对水泥胶砂力学性能具有显著影响。通过立磨试验系统制备了不同细度的矿渣粉,采用激光粒度分析、扫描电镜分析及灰色关联分析方法,系统研究了立磨矿渣粉颗粒形貌及颗粒粒度与水泥胶砂强度的内在联系。结果表明,立磨矿渣粉颗粒群存在更显著的多分散性特征;0~5μm矿渣粉颗粒主导水泥胶砂7d早期强度提升,5~10μm矿渣粉颗粒对水泥胶砂28d后期强度贡献最大;0~5μm与5~10μm矿渣粉颗粒分别与矿渣粉7d和28d活性指数关联度最高(0.842和0.716)。研究还发现,立磨矿渣粉颗粒的粒度均匀性随粒度的增加而降低,但通过优化0~20μm矿渣粉颗粒占比可显著提高水泥胶砂的力学性能,为立磨系统制备高性能矿渣粉的工艺调控提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘畅
李勇
关键词:  立磨  矿渣粉  颗粒级配  力学性能    
Abstract: This study analyzes the significant influence of slag powder particle size on the mechanical properties of cement mortar when used as a raw material in cement production. Slag powders of different fineness levels were prepared using a vertical roller mill grinding test system. The intrinsic relationship between the particle morphology of vertical mill-ground slag powder, particle size, and cement mortar strength was systematically investigated through laser particle size analysis, scanning electron microscopy, and grey correlation analysis. The results indicate that the particle group of vertical mill-ground slag powder exhibits more pronounced polydispersity. Particles in the 0~5μm range primarily enhance the 7d early strength of cement mortar, while particles in the 5~10μm range contribute most significantly to the 28d later strength. The particles in the 0~5μm and 5~10μm ranges exhibit the highest correlation with the 7d and 28d activity indices of slag powder (0.842 and 0.716, respectively). The study also found that the particle size uniformity of vertical mill-ground slag powder decreases as the particle size increases. However, optimizing the proportion of particles in the 0~20μm range can significantly improve the mechanical properties of cement mortar, providing a theoretical basis for process control in the production of high-performance slag powder using vertical roller mill systems.
Key words:  vertical roller mill    slag powder    particle size distribution    mechanical properties
收稿日期:  2025-02-19                出版日期:  2025-09-25      发布日期:  2025-09-22      整期出版日期:  2025-09-25
ZTFLH:  TQ172  
  TQ172.632.5  
作者简介:  刘畅(1989—),男,博士,高级工程师,主要从事料床粉磨机理及装备开发研究。E-mail:1480201353@qq.com
引用本文:    
刘畅, 李勇. 立磨矿渣粉粒径对水泥胶砂力学性能的影响研究[J]. 水泥技术, 2025, 1(5): 18-23.
LIU Chang, LI Yong. Study on the Influence of Vertical Roller Mill Grinding Slag Powder Particle Size on the Mechanical Properties of Cement Mortar. Cement Technology, 2025, 1(5): 18-23.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20255018  或          http://www.cemteck.com/CN/Y2025/V1/I5/18
[1] 申荣廷, 宋留庆, 刘运华, 孙延良, 任国鑫. 高端立磨在埃塞俄比亚万吨水泥生产线的应用[J]. 水泥技术, 2025, 1(5): 1-6.
[2] 蔡晓亮, 杜鑫, 滑松, 彭凌云, 黄雄. 基于水泥立磨的低碳分级分别粉磨工艺及工程应用[J]. 水泥技术, 2025, 1(5): 7-12.
[3] 王咏琴, 聂建, 方妍, 张伟丽, 叶卫东. 立磨和球磨机联合终粉磨煤粉制备工艺的节能改造[J]. 水泥技术, 2025, 1(5): 13-17.
[4] 蔡晓亮. TRMGP34.2外循环钢渣立磨的开发与应用[J]. 水泥技术, 2025, 1(3): 22-27.
[5] 黄新云.

石灰石破碎系统改造 [J]. 水泥技术, 2025, 1(2): 43-46.

[6] 朱林旭, 张林鹏, 王庆轩, 张雪峰, 杨娟.

稻壳灰超高强混凝土基本力学性能及微观分析 [J]. 水泥技术, 2025, 1(2): 69-75.

[7] 蔡晓亮. TRMS 45.2立磨生产超细矿渣粉的调试实践[J]. 水泥技术, 2025, 1(1): 35-40.
[8] 陈军, 李聪, 宋留庆, 王涛, 刘洋. 采用薄层灰岩生产精品砂石骨料的应用实践[J]. 水泥技术, 2025, 1(1): 50-57.
[9] 张高科, 姚营娇, 张一新.

TRM53.41生料立磨节能降耗改造 [J]. 水泥技术, 2024, 1(4): 65-69.

[10] 安卫军, 银建军, 滑松, 刘迪, 彭凌云.

TRMK5041水泥立磨粉磨系统优化升级 [J]. 水泥技术, 2024, 1(2): 13-18.

[11] 李特, 李琦. 不同替代率玻璃粉对混凝土性能的影响[J]. 水泥技术, 2024, 1(2): 91-96.
[12] 刘睿楠, 王立艳. 不同掺量硼酸对磷酸镁水泥性能的影响[J]. 水泥技术, 2024, 1(1): 83-88.
[13] 谢明轩 .

不同种类生物质灰对混凝土力学性能影响研究 [J]. 水泥技术, 2023, 1(6): 90-94.

[14] 彭凌云, 董苑, 刘栋强. 国产水泥立式辊磨研磨区提产降耗改造[J]. 水泥技术, 2023, 1(4): 43-46.
[15] 张冠军. 复掺石灰石粉高强机制砂混凝土性能研究[J]. 水泥技术, 2022, 1(6): 87-94.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[5] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[6] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[7] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[8] WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure[J]. Cement Technology, 2018, 1(1): 83 -88 .
[9] LIU Xudong. How to Execute 60 kV Transmission Line EPC Project[J]. Cement Technology, 2018, 1(1): 89 -91 .
[10] YAO Piqiang, HAN Hui, YU Weimin. Study on Calcining and Preliminary Application of New Low Calcium Cement[J]. Cement Technology, 2018, 1(2): 17 -25 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview