Please wait a minute...
水泥技术, 2023, 1(2): 20-    doi: 10.19698/j.cnki.1001-6171.20232020
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
水泥熟料烧成系统能效提升技术的研究及应用
1 天津水泥工业设计研究院有限公司,天津  300400; 2 徐州中联水泥有限公司,江苏  徐州  221135;
Research and Application on Improving Energy Efficiency of Cement Clinker Pyro-system
1. Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China;
2. CUCC (Xuzhou) Co., Ltd. , Xuzhou Jiangsu 221135, China 
下载:  PDF (3298KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
计算分析了现有水泥生产线热平衡支出项中影响热耗的主要因素,针对水泥行业能耗双控目标,提出了能效提升解决方案。现有生产线技改项目应用显示,烧成系统热效率再提升5%~9%,熟料标准煤耗降低10kg/t.cl以上,达到并优于GB 16780-2021标准中熟料单位产品综合煤耗指标1级能效;能效提升的同时,通过应用分解炉自脱硝源头减排技术,分解炉出口CO浓度不超过500ppm,喷氨前NOX本底浓度<350mg/Nm3,氨水用量3kg/t.cl的条件下,NOX排放浓度<50mg/Nm3,满足国家环保标准要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马娇媚
赵亮
张建国
王科学
关键词:  能效提升  超低排放  节能降碳  五级改六级    
Abstract: 
Based on the requirements of double control of energy consumption in the cement industry under the background of double carbon, the main factors affecting heat consumption in the thermal balance expenditure of the existing production line were analyzed through the calculation of thermal efficiency. It put forward the energy efficiency improvement solution, which is typically applied in the technical transformation of the existing production line, and the thermal efficiency of the sintering system is further increased by 5%~9%. Fuel consumption per unit product of clinker can be reduced by more than 10kg/t.cl, reaching and better than level 1 of GB 16780-2021. It improves energy efficiency while taking into account the environmental protection function of the pyro-system, through the application of calciner self-denitrification technology to reduce source emission. The CO content out of calciner would not exceed 500ppm and the original NOx before ammonia below 350mg/Nm3, the ammonia water consumption below 3kg/t.cl under the condition of NOx emission below 50mg/Nm3 of environmental protection requirements. These measures and technology would help the plants to meet the rapid development of enterprises.
Key words:  energy efficiency improvement    ultra-low emissions    carbon reduction    preheater modification of five stage to six stage
收稿日期:  2023-02-21      修回日期:  2023-03-25           出版日期:  2023-03-25      发布日期:  2023-03-25      整期出版日期:  2023-03-25
ZTFLH:  TQ172.622.29  
基金资助: 

国家重点研发计划《火电、钢铁、建材等典型行业率先碳达峰的技术路线图研究》

课题编号2021YFF0601001

引用本文:    
马娇媚, 赵亮, 张建国, 王科学. 水泥熟料烧成系统能效提升技术的研究及应用[J]. 水泥技术, 2023, 1(2): 20-.
MA Jiaomei, ZHAO Liang, ZHANG Jianguo, WANG Kexue. Research and Application on Improving Energy Efficiency of Cement Clinker Pyro-system. Cement Technology, 2023, 1(2): 20-.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20232020  或          http://www.cemteck.com/CN/Y2023/V1/I2/20
[1] 马娇媚, 王克东, 隋明洁, 高为民. 万吨级熟料烧成系统节能降碳[J]. 水泥技术, 2024, 1(1): 15-.
[2] 张冬冬, 王朝雄. SCR脱硝系统工艺方案设计及影响分析[J]. 水泥技术, 2023, 1(2): 32-.
[3] 马娇媚, 王克东, 隋明洁, 高为民. 万吨级熟料烧成系统节能降碳[J]. 水泥技术, 2023, 1(1): 15-23.
[4] 赵睿敏, 于永现, 凌金辉, 闫艳选. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022, 1(2): 40-45.
[5] 刘宏超. 水泥回转窑窑尾烟气超低排放的技术改造[J]. 水泥技术, 2022, 1(1): 18-22.
[6] 邵磊. 水泥窑氮氧化物超低排放的技术改造[J]. 水泥技术, 2021, 1(5): 47-50.
[7] 董蕊, 陈昌华, 李宁. 3 000t/d水泥熟料生产线NOx的超低排放改造[J]. 水泥技术, 2021, 1(4): 43-46.
[8] 张涛, 章园, 李宇.
长袋低压脉冲袋除尘器在水泥磨粉尘超低排放中的应用
[J]. 水泥技术, 2021, 1(1): 46-49.
[9] 张少明, 刘宏保, 张耀智, 洪宝. 4 500t/d熟料生产线超低排放技改措施及效果[J]. 水泥技术, 2021, 1(1): 50-56.
[10] 潘伟东, 张继雄.
智能高效脱硝系统在水泥生产上的应用
[J]. 水泥技术, 2020, 1(2): 79-81.
[11] 张松, 王作杰, 葛媛媛.
超高温除尘技术在水泥行业应用的探讨
[J]. 水泥技术, 2019, 1(5): 90-93.
[12] 唐多久, 汪涛.
自适应SNCR技术在水泥厂实现氮氧化物超低排放
[J]. 水泥技术, 2019, 1(4): 69-73.
[13] 王作杰.
水泥窑尾废气超低排放的技术探讨(下)
[J]. 水泥技术, 2019, 1(3): 81-88.
[14] 王作杰.
水泥窑尾废气超低排放的技术探讨(上)
[J]. 水泥技术, 2019, 1(2): 50-57.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview