Please wait a minute...
水泥技术, 2022, 1(2): 46-49    doi: 10.19698/j.cnki.1001-6171.20222046
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
分级燃烧技术在5 000t/d熟料生产线的应用实践
鲁南中联水泥有限公司,山东  滕州   277531
Application of Staged Combustion Technology in 5 000t/d Clinker Production Line
China United Cement Lunan Co., Ltd. , Tengzhou Shandong 277531, China 
下载:  PDF (1684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 
分析了水泥生产中NOX的形成机理,介绍了分级燃烧工艺的改造流程。通过改造分解炉燃烧系统、优化三次风管、改进C4下料管、更新撒料盒、优化SNCR系统喷枪位置,精细化系统操作,在水泥窑烟气NOX排放浓度<100mg/Nm3条件下,SNCR脱硝系统氨水(浓度20%)用量约4.1kg/t.cl,比改造前节省50%以上。改造前,氨逃逸浓度平均值为1.71mg/Nm3,≯8mg/Nm3合格率93.42%;改造后,氨逃逸浓度平均值0.27mg/Nm3,≯8mg/Nm3合格率100%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄彬
孙文博
关键词:  分级燃烧  分解炉  脱硝效率    
Abstract: The mechanism of NOX generation in cement production is analyzed, and the technological transformation process of staged combustion technology is introduced. By transforming the combustion system of the calciner, optimizing the tertiary air duct, improving the C4 discharge pipe, updating the splash boxes, optimizing the position of the spray gun of the SNCR system, and refining the system operation, under the condition that the NOX emission concentration of cement kiln flue gas is 
<100mg/Nm3, the amount of ammonia water (20% concentration) in the SNCR system is about 4.1kg/t clinker, which is reduced by more than 50% than before the transformation. Before the transformation, the average ammonia escape emission concentration was 1.71mg/Nm3, and the qualified rate below 8mg/Nm3 was 93.42%; After the transformation, the average ammonia escape emission concentration is 0.27mg/Nm3, and the qualified rate below 8mg/Nm3 is 100%.
Key words:  staged combustion    calciner    denitration efficiency
收稿日期:  2021-07-25                出版日期:  2022-03-25      发布日期:  2022-03-25      整期出版日期:  2022-03-25
ZTFLH:  TQ172.622.29  
引用本文:    
黄彬, 孙文博. 分级燃烧技术在5 000t/d熟料生产线的应用实践[J]. 水泥技术, 2022, 1(2): 46-49.
HUANG Bin, SUN Wenbo. Application of Staged Combustion Technology in 5 000t/d Clinker Production Line. Cement Technology, 2022, 1(2): 46-49.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20222046  或          http://www.cemteck.com/CN/Y2022/V1/I2/46
[1] 赵睿敏, 于永现, 凌金辉, 闫艳选. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022, 1(2): 40-45.
[2] 刘宏超. 水泥回转窑窑尾烟气超低排放的技术改造[J]. 水泥技术, 2022, 1(1): 18-22.
[3] 张少明, 刘宏保, 张耀智, 洪宝. 4 500t/d熟料生产线超低排放技改措施及效果[J]. 水泥技术, 2021, 1(1): 50-56.
[4] 成舒望, 桑圣欢, 吴涛, 罗超, 冯京.
燃用高硫无烟煤水泥熟料生产线分级燃烧应用实例
[J]. 水泥技术, 2020, 1(3): 70-73.
[5] 朱永胜.
回转窑连续出现黄心料包心料的工艺调整
[J]. 水泥技术, 2020, 1(1): 97-98.
[6] 马娇媚, 彭学平, 代中元, 谌佳荣, 刘瑞芝.
水泥生产燃用石油焦自脱硝技术的实践
[J]. 水泥技术, 2019, 1(6): 19-25.
[7] 陈昌华, 代中元, 彭学平, 姚国镜.
分解炉梯度燃烧自脱硝技术的研究与工程应用
[J]. 水泥技术, 2019, 1(4): 19-23.
[8] 陈昌华, 马娇媚, 武晓萍, 彭学平, 陶从喜.
印尼海德堡万吨生产线烧成系统设计优化与运行
[J]. 水泥技术, 2019, 1(1): 45-50.
[9] 马娇媚, 陶从喜, 彭学平, 陈昌华.
水泥窑脱硝工艺技术综合评价
[J]. 水泥技术, 2018, 1(2): 77-81.
[10] 钟克辉. 采用煤粉分级燃烧技术降低NOX浓度的实践[J]. 水泥技术, 2017, 1(4): 96-97.
[11] 师留刚, 杨中强, 夏中清. 水泥分解炉环节优化节能控制系统[J]. 水泥技术, 2016, 1(6): 45-48.
[12] 刘贵新, 陈昌华, 陶从喜, 彭学平, 李亮.
带SLC分解炉的4 000t/d熟料生产线烧成系统技术优化
[J]. 水泥技术, 2016, 1(5): 87-90.
[13] 尹国明.
水泥企业氮氧化物减排的两种技术措施及实践
[J]. 水泥技术, 2016, 1(4): 76-77.
[14] 张凯, 厉惠良, 陶从喜, 彭学平. 分解炉三次风管结构优化研究[J]. 水泥技术, 2015, 1(3): 33-37.
[15] 宋立琮, 王靖.
模糊广义预测控制在水泥分解炉温度控制中的应用
[J]. 水泥技术, 2015, 1(2): 29-30.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview