生命周期评价,煤矸石,粉煤灰,水泥,环境影响 ," /> 生命周期评价,煤矸石,粉煤灰,水泥,环境影响 ,"/> life cycle assessment,gangue, fly ash, cement, environmental impact ,"/> <p class="MsoNormal"> 以煤矸石和粉煤灰为混合材的水泥生命周期环境影响评价
Please wait a minute...
水泥技术, 2023, 1(6): 86-89    doi: 10.19698/j.cnki.1001-6171.20236086
  材料研究 本期目录 | 过刊浏览 | 高级检索 |

以煤矸石和粉煤灰为混合材的水泥生命周期环境影响评价

1 同济大学材料科学与工程学院,上海  201804;    2 华润水泥技术研发有限公司,广东  广州  510460

Environmental Impact Assessment of Cement Life Cycle with Gangue and Fly Ash as Mixed Material

1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;

2. China Resources Cement Technology R&D Co., Ltd. , Guangzhou Guangdong 510460, China

下载:  PDF (4148KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用LCA(生命周期评价)方法,对比研究了广州某水泥厂采用煤矸石和粉煤灰作混合材前后,分别生产的P?O42.5R水泥和P?42.5R水泥在整个生产过程的环境影响,并对评价结果进行了分析。选定气候变化(GWP)、环境酸化(AP)、非生物资源消耗(ADP)、富营养化(EP)、可吸入无机物(RI)以及光化学臭氧合成(POFP6种环境影响类型指标作为评价指标。经过LCA计算得出,在水泥粉磨过程中加入3.34%的煤矸石和3.32%的粉煤灰,对水泥生产过程的六种环境影响类型指标均有降低作用,GWPADPAPEPRIPOFP分别降低8.52%9.18%9.09%8.68%8.88%8.29%

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李正泽
李刚
郭晓潞
刘卓霖
佘安明
关键词:  生命周期评价')" href="#">

生命周期评价  煤矸石  粉煤灰  水泥  环境影响     

Abstract: 

The Life Cycle Assessment (LCA) method was used to compare and study the environmental impact of the whole production process of P·O 42.5R cement and P·Ⅱ 42.5R cement produced before and after the use of mixed material in a cement plant in Guangzhou, and the evaluation results were analyzed. Six environmental impact types were selected: Global Warming Potential(GWP), Acidification Potential(AP), Abiotic Depletion Potential(ADP), Eutrophication Potential(EP), Respirable Inorganic material(RI), and Photochemical Ozone Formation Potential(POFP). LCA calculation shows that adding 3.34% gangue and 3.32% fly ash in the cement grinding process can reduce the six environmental impacts of the cement production process. GWP, ADP, AP, EP, RI and POFP decreased by 8.52%, 9.18%, 9.09%, 8.68%, 8.88% and 8.29% respectively.

Key words:  life cycle assessment')" href="#">

life cycle assessment    gangue    fly ash    cement    environmental impact

收稿日期:  2023-04-07      修回日期:  2023-11-25           出版日期:  2023-11-25      发布日期:  2023-11-25      整期出版日期:  2023-11-25
ZTFLH:  TQ172.6  
基金资助: “十四五”国家重点研发计划项目(2021YFB3802001)
引用本文:    
李正泽, 李刚, 郭晓潞, 刘卓霖, 佘安明.

以煤矸石和粉煤灰为混合材的水泥生命周期环境影响评价 [J]. 水泥技术, 2023, 1(6): 86-89.
LI Zhengze, LI Gang, GUO Xiaolu, LIU Zhuolin, SHE Anming.

Environmental Impact Assessment of Cement Life Cycle with Gangue and Fly Ash as Mixed Material . Cement Technology, 2023, 1(6): 86-89.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20236086  或          http://www.cemteck.com/CN/Y2023/V1/I6/86
[1] 曹勤, 邓荪, 刘帅明, 胡国林, 朱璟. 低碱高硅率高抗硫酸盐水泥熟料的研发及生产实践[J]. 水泥技术, 2024, 1(1): 89-92.
[2] 冯云, 李榛, 赵峰, 张文涛, 闫可可. 降低水泥水溶性铬(Ⅵ)方法研究综述[J]. 水泥技术, 2024, 1(1): 78-82.
[3] 兰东, 吴明献, 邹波.

ϕ4.2m×13m水泥滑履磨筒体磨损穿孔修复 [J]. 水泥技术, 2023, 1(6): 68-71.

[4] 周莹莹, 田博, 向峥, 田哲.

基于水泥厂电能计量系统的新能源发电接入点的选择 [J]. 水泥技术, 2023, 1(6): 82-85.

[5] 谢明轩 .

不同种类生物质灰对混凝土力学性能影响研究 [J]. 水泥技术, 2023, 1(6): 90-94.

[6] 石国平, 刘栋强. 水泥粉磨系统智能化发展现状及优化途径[J]. 水泥技术, 2023, 1(5): 13-17.
[7] 谢文虎. 提升水泥技术装备运行能效水平的探索实践[J]. 水泥技术, 2023, 1(5): 33-37.
[8] 王爱琴, 罗振, 于浩波. 水泥湿法脱硫项目建设新技术与管理新模式[J]. 水泥技术, 2023, 1(5): 38-42.
[9] 赖佳贵. 六嘴回转式水泥包装机改造与应用[J]. 水泥技术, 2023, 1(5): 68-76.
[10] 贾坤鹏, 时耀辉, 杜会平, 董志. 水泥适应性差的原因分析及解决措施[J]. 水泥技术, 2023, 1(5): 81-85.
[11] 李特, 李琦. 超声作用与减水剂对水泥基材料性能影响的对比分析[J]. 水泥技术, 2023, 1(5): 91-96.
[12] 赵文礼. 粉煤灰计量精度改进措施[J]. 水泥技术, 2023, 1(4): 60-63.
[13] 李华军, 杨欢迎, 马娇媚, 赵亮, 王佳硕. 双碳背景下水泥行业氢能的发展现状及趋势[J]. 水泥技术, 2023, 1(3): 15-24.
[14] 冯云, 李榛, 张文涛, 李佳, 赵峰. 含氟污泥对熟料凝结时间影响的研究进展[J]. 水泥技术, 2023, 1(3): 91-96.
[15] 谢恩鑫, 苏宏东, 邓辉. 改性磷石膏在普通硅酸盐水泥中的应用[J]. 水泥技术, 2023, 1(2): 93-.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview