以煤矸石和粉煤灰为混合材的水泥生命周期环境影响评价
1 同济大学材料科学与工程学院,上海 201804; 2 华润水泥技术研发有限公司,广东 广州 510460
Environmental
Impact Assessment of Cement Life Cycle with Gangue and Fly Ash as Mixed
Material
1. School of
Materials Science and Engineering, Tongji University, Shanghai 201804, China;
2. China Resources Cement Technology R&D Co., Ltd. , Guangzhou
Guangdong 510460, China
摘要
采用LCA (生命周期评价)方法,对比研究了广州某水泥厂采用煤矸石和粉煤灰作混合材前后,分别生产的P?O42.5R 水泥和P? Ⅱ42.5R 水泥在整个生产过程的环境影响,并对评价结果进行了分析。选定气候变化(GWP )、环境酸化(AP )、非生物资源消耗(ADP )、富营养化(EP )、可吸入无机物(RI )以及光化学臭氧合成(POFP )6 种环境影响类型指标作为评价指标。经过LCA 计算得出,在水泥粉磨过程中加入3.34% 的煤矸石和3.32% 的粉煤灰,对水泥生产过程的六种环境影响类型指标均有降低作用,GWP 、ADP 、AP 、EP 、RI 和POFP 分别降低8.52% 、9.18% 、9.09% 、8.68% 、8.88% 和8.29% 。
关键词:
生命周期评价')" href="#">
生命周期评价
煤矸石
粉煤灰
水泥
环境影响
Abstract:
The Life Cycle
Assessment (LCA) method was used to compare and study the environmental impact
of the whole production process of P ·O 42.5R cement and P ·Ⅱ 42.5R cement produced before and after the use of mixed material in
a cement plant in Guangzhou, and the evaluation results were analyzed. Six
environmental impact types were selected: Global Warming Potential(GWP),
Acidification Potential(AP), Abiotic Depletion Potential(ADP), Eutrophication
Potential(EP), Respirable Inorganic material(RI), and Photochemical Ozone
Formation Potential(POFP). LCA calculation shows that adding 3.34% gangue and
3.32% fly ash in the cement grinding process can reduce the six environmental
impacts of the cement production process. GWP, ADP, AP, EP, RI and POFP
decreased by 8.52%, 9.18%, 9.09%, 8.68%, 8.88% and 8.29% respectively.
Key words:
life cycle
assessment')" href="#">
life cycle
assessment
gangue
fly ash
cement
environmental impact
收稿日期: 2023-04-07
修回日期: 2023-11-25
出版日期: 2023-11-25
发布日期: 2023-11-25
整期出版日期: 2023-11-25
基金资助: “十四五”国家重点研发计划项目(2021YFB3802001)
引用本文:
李正泽, 李刚, 郭晓潞, 刘卓霖, 佘安明.
以煤矸石和粉煤灰为混合材的水泥生命周期环境影响评价
[J]. 水泥技术, 2023, 1(6): 86-89.
LI Zhengze, LI Gang, GUO Xiaolu, LIU Zhuolin, SHE Anming.
Environmental
Impact Assessment of Cement Life Cycle with Gangue and Fly Ash as Mixed
Material
. Cement Technology, 2023, 1(6): 86-89.
链接本文:
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20236086
或
http://www.cemteck.com/CN/Y2023/V1/I6/86
[1]
. Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China [J]. Cement Technology, 2018, 1(1): 17
-21
.
[2]
DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ) [J]. Cement Technology, 2018, 1(1): 22
-26
.
[3]
LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base [J]. Cement Technology, 2018, 1(1): 27
-31
.
[4]
LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel [J]. Cement Technology, 2018, 1(1): 32
-34
.
[5]
MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo [J]. Cement Technology, 2018, 1(1): 35
-38
.
[6]
HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38
-48
.
[7]
XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br# [J]. Cement Technology, 2018, 1(1): 49
-53
.
[8]
GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54
-59
.
[9]
WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects [J]. Cement Technology, 2018, 1(1): 60
-64
.
[10]
JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72
-73
.
Viewed
Full text
Abstract
Cited
Shared
Discussed