Please wait a minute...
水泥技术, 2024, 1(5): 19-25    doi: 10.19698/j.cnki.1001-6171.20245019
  节能降碳 本期目录 | 过刊浏览 | 高级检索 |
5 000t/d水泥熟料生产线节能降碳升级改造实践
1 天津水泥工业设计研究院有限公司,天津  300400; 2 泰山中联水泥有限公司,山东  泰安  271001
Upgrading and Transformation Practice of Energy-saving and Carbon Reduction for 5 000t/d Cement Clinker Production Line
1. Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China;
2. Taishan China United Cement Co., Ltd. , Tai’an Shandong 271001, China
下载:  PDF (6874KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 某5 000t/d水泥熟料生产线存在预热器换热效果差、C1旋风筒出口温度高、分解炉容积偏小、NOX排放浓度高、冷却系统热回收效率低、熟料单位产品综合能耗指标较高等问题,是水泥行业碳达峰和碳减排技改试点项目。该项目提出了烧成系统节能降碳升级改造方案,并同步对生料粉磨系统及水泥粉磨系统进行了整体优化升级。通过采取分解炉扩容、应用低能耗自脱硝技术、将五级预热器升级为六级、扩大烟室缩口尺寸、更换三次风管、采用带中置辊式破碎机的行进式稳流冷却机并配套高效风机等技改措施,熟料单位产品综合煤耗低于国标1级能效指标,每年可节约标煤3.5×104t,减少CO2排放7.7×104t,节约氨水用量0.3×104t,NOX排放浓度<50mg/Nm3,节能降碳效果显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高为民
马娇媚
张伟
隋明洁
俞为民
关键词:  烧成系统  能效提升  五级改六级  自脱硝技术  节能降碳    
Abstract: A certain 5 000t/d cement clinker production line with problems such as poor heat exchange efficiency of preheater, high outlet temperature of C1 cyclone outlet, small calciner volume, high NOx emission, low heat recovery efficiency of cooler, and high energy consumption per unit product of clinker. It is a pilot project for carbon peak and carbon reduction technology transformation in the cement industry. The project applies an energy-saving and carbon reducing upgrade plan for the pyro system, and simultaneously optimizes and upgrades the raw material grinding system and cement grinding system. By adopting technological transformation measures such as expanding the volume of calciner, applying low-energy self-denitrification technology, upgrading the 5-stage preheater to 6-stage, expanding the kiln chamber, replacing the tertiary air duct, and apply a grate cooler with intermediate roller crusher and high-efficiency fans. The fuel consumption per unit product of clinker is lower than the national standard level 1 energy efficiency index, saving 3.5×104t of standard coal per year, reducing CO2 emissions by 7.7×104t, saving 0.3×104t of ammonia water consumption, and NOX emission concentration <50mg/Nm3, with significant energy-saving and carbon reduction effects.
Key words:  pyro system    energy efficiency improvement    upgrading the 5-stage preheater to 6-stage    self-denitrification technology    energy conservation and carbon reduction
收稿日期:  2024-05-09                出版日期:  2024-09-25      发布日期:  2024-09-25      整期出版日期:  2024-09-25
ZTFLH:  TQ172.625.9  
引用本文:    
高为民, 马娇媚, 张伟, 隋明洁, 俞为民. 5 000t/d水泥熟料生产线节能降碳升级改造实践[J]. 水泥技术, 2024, 1(5): 19-25.
GAO Weimin, MA Jiaomei, ZHANG Wei, SUI Mingjie, YU Weimin. Upgrading and Transformation Practice of Energy-saving and Carbon Reduction for 5 000t/d Cement Clinker Production Line. Cement Technology, 2024, 1(5): 19-25.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20245019  或          http://www.cemteck.com/CN/Y2024/V1/I5/19
[1] 薛承志, 张林菊, 李东, 王文清, 孙志鹏. 6 000t/d水泥熟料生产线烧成系统节能降耗技术改造[J]. 水泥技术, 2024, 1(5): 31-35.
[2] 周桂胜.

5 000t/d水泥熟料生产线节能降耗改造 [J]. 水泥技术, 2024, 1(3): 32-37.

[3] 赵武魁.

2 500t/d水泥熟料生产线烧成系统的热工分析及优化 [J]. 水泥技术, 2024, 1(3): 38-42.

[4] 关长亮. 基于中子活化分析仪的水泥烧成系统游离氧化钙卡边控制方法研究[J]. 水泥技术, 2024, 1(1): 69-73.
[5] 柳学忠, 周卫兵, 徐保国, 朱教群, 许元正.

水泥半终粉磨系统生产工艺优化改造 [J]. 水泥技术, 2023, 1(6): 41-46.

[6] 梁乾, 陶从喜, 邓乾, 胡斯亮, 何明海. 5 000t/d水泥熟料生产线烧成系统节能降耗改造[J]. 水泥技术, 2023, 1(4): 55-59.
[7] 马娇媚, 赵亮, 张建国, 王科学. 水泥熟料烧成系统能效提升技术的研究及应用[J]. 水泥技术, 2023, 1(2): 20-.
[8] 马娇媚, 王克东, 隋明洁, 高为民. 万吨级熟料烧成系统节能降碳[J]. 水泥技术, 2023, 1(1): 15-23.
[9] 陈学勇, 陈廷伟, 钱伟, 许龙旭, 庞小平. 5 500t/d水泥熟料生产线烧成系统的技术改造[J]. 水泥技术, 2022, 1(4): 15-20.
[10] 狄东仁, 孟军, 肖静.
水泥生产线烧成系统电能消耗指标分析
[J]. 水泥技术, 2020, 1(5): 15-18.
[11] 马娇媚, 刘芳, 郭天代, 陶从喜, 彭学平. 5 500t/d六级预热器烧成系统的开发应用[J]. 水泥技术, 2017, 1(4): 22-25.
[12] 武晓萍, 徐俊杰. 高海拔地区水泥生产线技术诊断及优化[J]. 水泥技术, 2017, 1(1): 85-89.
[13] 陶从喜, 董蕊, 钟克辉, 黄茂, 陈廷伟, 刘长锁, 苏兴辉, 梁乾, 陈学勇, 马玉国, 李国军. 2500 t/d烧成系统的改造[J]. 水泥技术, 2014, 1(6): 17-19.
[14] 陶从喜, 胡芝娟, 彭学平, 狄东仁. 5000t/d烧成系统技术开发 [J]. 水泥技术, 2002, 1(4): 5-9.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview