Please wait a minute...
水泥技术, 2025, 1(3): 16-21    doi: 10.19698/j.cnki.1001-6171.20253016
  装备技术 本期目录 | 过刊浏览 | 高级检索 |
立磨磨辊轴承选型优化设计及应用
中国建材装备集团有限公司合肥中亚建材装备有限责任公司,天津  300133
Optimization Design and Application of Roller Bearings Selection in Vertical Roller Mill
CNBM Equipment Group, Hefei Zhongya Building Material Equipment Co., Ltd. , Tianjin 300133, China 
下载:  PDF (2446KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 磨辊是立式辊磨的核心部件,通常采用圆柱轴承和双列圆锥轴承组合配置方式,如何提高轴承寿命并降低磨辊成本是当前研究的重点。磨辊轴承寿命的常规计算方法基于磨辊辊面压强均匀分布假设展开,计算所得寿命与实际使用寿命差异较大。本文提出了一种将磨辊辊压力的加载位置调整至近辊套大端的新计算方法,并将圆柱轴承与圆锥轴承对调位置,受力分析计算得出圆柱轴承和双列圆锥轴承的使用寿命均>80 000h。同时,按照新的配置方案优化了轴承选型,进行了辊轴受力计算和辊轴、轮毂有限元分析,有效降低了轴承冗余设计。实际应用表明,优化后的磨辊轴承配置已成功运行三年以上,提高了设备可靠性和使用寿命,节约了成本,经济效益显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩有昂
梁盛澎
许晨
关键词:  立式辊磨  轴承寿命  受力分析  优化设计  降本增效    
Abstract: The roller is the core component of the vertical roller mill, and usually adopts the combination of cylindrical bearing and double-row conical bearing, how to improve the bearing life and reduce the cost of roller is the focus of current research. The traditional calculation method for the bearing life of the roller is based on the assumption of uniform distribution of the pressure on the roller surface, resulting in a significant difference between the calculated life and the actual service life. This paper proposes a new calculation method that adjusts the loading position of the roller pressure to the large end of the roller sleeve, and the positions of the cylindrical bearing and the conical bearing are reversed, the life of cylindrical bearing and double-row tapered bearing is more than 80 000h by force analysis and calculation. At the same time, the bearing selection is optimized according to the new configuration scheme, and the stress calculation of roller shaft and finite element analysis of roller shaft and hub are carried out, which effectively reduces the redundant design of bearing. The practical application shows that the optimized roller bearing configuration has been successfully operated for more than three years, which has improved the reliability and service life of the equipment, saved the cost and achieved remarkable economic benefits.
Key words:  vertical roller mill    bearing life    force analysis    optimal design    cost reduction and efficiency improvement
收稿日期:  2024-09-29                出版日期:  2025-05-25      发布日期:  2025-05-25      整期出版日期:  2025-05-25
ZTFLH:  TQ172.632.9  
作者简介:  韩有昂(1985—),男,硕士,高级工程师,主要从事立磨的研发与设计。E-mail:hanyouang@sinoma-tianjin.cn
引用本文:    
韩有昂, 梁盛澎, 许晨. 立磨磨辊轴承选型优化设计及应用[J]. 水泥技术, 2025, 1(3): 16-21.
HAN You’ang, LIANG Shengpeng, XU Chen. Optimization Design and Application of Roller Bearings Selection in Vertical Roller Mill. Cement Technology, 2025, 1(3): 16-21.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20253016  或          http://www.cemteck.com/CN/Y2025/V1/I3/16
[1] 章清娇, 赵春芳, 蔡智, 韩辉.

水泥行业碳减排、碳捕集与利用技术发展现状与展望 [J]. 水泥技术, 2024, 1(6): 15-19.

[2] 宁波, 喻宏祥, 韩德夫, 马玉震, 孙海全.

大型袋式除尘器边界轮廓法数值模拟及结构优化设计 [J]. 水泥技术, 2024, 1(4): 55-61.

[3] 刘迪, 杜鑫, 武晓, 刘畅. 立式辊磨煤粉制备系统节能降耗改造[J]. 水泥技术, 2023, 1(3): 50-55.
[4] 杜佳佳. 旋流器和喷嘴对燃烧器性能影响的数值模拟研究[J]. 水泥技术, 2022, 1(1): 27-34.
[5] 刘迪, 王维莉, 刘畅, 聂文海, 赵剑波.
国产TRMS4531镍渣辊磨的应用
[J]. 水泥技术, 2021, 1(1): 17-20.
[6] 孔金山, 李光业.
LM型立式辊磨机在循环流化床锅炉脱硫系统中的应用
[J]. 水泥技术, 2020, 1(5): 46-49.
[7] 吕忠明.
窑头多管空冷器优化设计实例
[J]. 水泥技术, 2020, 1(4): 21-22.
[8] 李光业, 孔金山.
LM3722N型矿渣辊磨的开发及应用
[J]. 水泥技术, 2020, 1(3): 32-36.
[9] 郭磊, 孙文东, 丰旺, 于涛.
TRML36.4脱硫石灰石辊磨的开发及应用
[J]. 水泥技术, 2020, 1(3): 21-24.
[10] 李光业, 孔金山.
立式辊磨在石膏粉磨上的应用
[J]. 水泥技术, 2020, 1(2): 31-35.
[11] 宋留庆, 聂文海, 柴星腾, 杜鑫.
TRM型立式辊磨粉磨冶金渣的现状
[J]. 水泥技术, 2019, 1(1): 60-64.
[12] 柴星腾, 聂文海, 秦中华, 杜鑫. 水泥辊磨技术的新进展[J]. 水泥技术, 2018, 1(4): 21-25.
[13] 丛晓静, 许龙旭, 刘旭. 提高回转窑大型铸造齿圈质量的研究[J]. 水泥技术, 2018, 1(2): 39-42.
[14] 石光, 赵剑波, 王振中, 魏娜. TRM型立式辊磨液压系统的应用[J]. 水泥技术, 2017, 1(2): 39-44.
[15] 石光, 刘箴, 赵贺楠. 微脉冲位移传感器在TRM型辊磨上的应用[J]. 水泥技术, 2016, 1(3): 32-34.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview