Please wait a minute...
水泥技术, 2026, 1(1): 17-24    doi: 10.19698/j.cnki.1001-6171.20261017
  数字智能 本期目录 | 过刊浏览 | 高级检索 |
分级燃烧与生物质协同掺烧对水泥生产线分解炉内NOX排放特性的影响研究
水沛
中国建材装备集团有限公司合肥水泥研究设计院有限公司,安徽  合肥  230051
Numerical Investigation of NOX Emission Characteristics in an Industrial Cement Precalciner under Staged Combustion and Biomass Co-firing
SHUI Pei
CNBM Equipment Group, Hefei Cement Research & Design Institute Co., Ltd. , Hefei Anhui 230051, China
下载:  PDF (3045KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为降低水泥生产线分解炉NOX排放浓度,本文以工业尺寸分解炉为原型,采用欧拉-拉格朗日方法构建了全尺寸数值模型,重点模拟分解炉气相燃烧、煤粉与生物质热解、NO生成与还原等关键反应。经网格无关性验证与现场实测数据对比,模型预测误差<10%,满足模拟精度要求。模拟结果揭示了分解炉内沿高度方向的NO生成与还原遵循“初始低速率转化-中段强还原-后期强生成”的演化规律,明确了核心还原区域分布。同时,探究了分级燃烧工艺优化(增设还原区、调整煤粉投加方式与配风)及煤粉掺烧生物质(玉米秸秆)技术的减排效果,结果表明:分级燃烧可通过强化分解炉内还原气氛实现NO减排,而煤粉掺烧生物质技术更具优势,在无需额外改造设备的前提下,生物质掺烧比例提升至30%时,分解炉出口NO浓度可稳定控制在300ppm左右,生料分解率维持在92%以上,为水泥行业NOX减排提供了经济高效的技术路径与理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
水沛
关键词:  水泥生产  分解炉  NOX减排  分级燃烧  生物质掺烧  数值模拟    
Abstract: Full-scale numerical investigation was conducted to characterize NOX emission behavior in an industrial cement precalciner under staged combustion and biomass co-firing conditions. An Euler-Lagrange framework was employed to develop a three-dimensional model that resolves gas-phase combustion, pyrolysis of pulverized coal and biomass, as well as the formation and reduction pathways of NO. The model was validated through grid-independence analysis and comparison with on-site industrial measurements, with prediction deviations of temperature and NO concentration within 10%, demonstrating satisfac tory accuracy for industrial-scale simulation.The simulation results reveal that NO formation and reduction along the precalciner height exhibit a distinct evolution pattern, characterized by an initial low-rate conversion region, an intermediate strong reduction zone, and a downstream region dominated by NO formation. Based on this understanding, the effects of staged combustion optimization, including extension of the reduction zone and redistribution of fuel injection and oxygen concentration, were systematically evaluated. In addition, the NOX mitigation performance of biomass co-firing with pulverized coal (corn straw) was investigated.The results indicate that staged combustion effectively suppresses NO formation by enhancing the reducing atmosphere within the precalciner. Moreover, biomass co-firing provides an efficient alternative for NOX reduction without additional structural modification: when the biomass co-firing ratio is increased to 30%, the NO concentration at the precalciner outlet can be maintained at approximately 300ppm, while the raw meal decomposition rate remains above 92%. The present study provides quantitative insights into NOX emission characteristics and offers practical guidance for low-NOX operation of industrial cement precalciners.
Key words:   cement production    precalciner    NOX emission reduction    staged combustion    biomass co-firing    numerical simulation
收稿日期:  2025-08-14                出版日期:  2026-01-25      发布日期:  2026-01-25      整期出版日期:  2026-01-25
ZTFLH:  TQ172.6  
  X781.5   
基金资助: 中国建筑材料联合会2022年度全国建材行业重大科技攻关“揭榜挂帅”项目(202201JBGS08-01);安徽省科技攻坚计划重点项目(202423k09020013)
作者简介:  水 沛(1986—),男,博士,副研究员,主要从事水泥装备的多相多物理场耦合仿真优化等研究。E-mail:shuipei@hcrdi.com
引用本文:    
水沛. 分级燃烧与生物质协同掺烧对水泥生产线分解炉内NOX排放特性的影响研究[J]. 水泥技术, 2026, 1(1): 17-24.
SHUI Pei. Numerical Investigation of NOX Emission Characteristics in an Industrial Cement Precalciner under Staged Combustion and Biomass Co-firing. Cement Technology, 2026, 1(1): 17-24.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20261017  或          http://www.cemteck.com/CN/Y2026/V1/I1/17
[1] 于浩波, 张松, 吴龙杰. 管式换热器结构对SCR反应器流场均布特性的影响机制研究[J]. 水泥技术, 2026, 1(1): 8-16.
[2] 李宁, 于海峰, 牛伟强, 李健熙.

分解炉深度自脱硝改造技术应用实践 [J]. 水泥技术, 2025, 1(6): 59-62.

[3] 杜佳佳.

不同入窑方式的富氧燃烧效果数值模拟研究 [J]. 水泥技术, 2025, 1(2): 21-27.

[4] 黄新云.

石灰石破碎系统改造 [J]. 水泥技术, 2025, 1(2): 43-46.

[5] 杨宏, 石新林, 刘德超, 王琼, 张俊. 智能质量控制系统在水泥企业的应用实践[J]. 水泥技术, 2025, 1(1): 58-62.
[6] 荣亚坤, 杨蕾, 邓荣娟, 王文清.

先进热工技术装备及其在万吨水泥生产线的应用 [J]. 水泥技术, 2024, 1(6): 31-35.

[7] 宁波, 喻宏祥, 韩德夫, 马玉震, 孙海全.

大型袋式除尘器边界轮廓法数值模拟及结构优化设计 [J]. 水泥技术, 2024, 1(4): 55-61.

[8] 王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
[9] 陈昌华, 彭学平, 俞为民, 金周政, 郑成航.

在线型梯度燃烧分解炉及其配套燃烧器的开发与应用 [J]. 水泥技术, 2023, 1(6): 13-17.

[10] 王炯, 齐树龙.

AQC锅炉进风管道保温数值模拟研究 [J]. 水泥技术, 2023, 1(6): 60-67.

[11] 别建敏, 王辉, 王李均, 郭永强. 6 000t/d水泥熟料生产线节能降耗改造实践[J]. 水泥技术, 2023, 1(3): 61-66.
[12] 李刚健. 高炉煤气燃烧数值模拟在LOMA-MLB热风炉调试中的应用[J]. 水泥技术, 2023, 1(1): 43-50.
[13] 陈学勇, 陈廷伟, 钱伟, 许龙旭, 庞小平. 5 500t/d水泥熟料生产线烧成系统的技术改造[J]. 水泥技术, 2022, 1(4): 15-20.
[14] 赵睿敏, 于永现, 凌金辉, 闫艳选. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022, 1(2): 40-45.
[15] 黄彬, 孙文博. 分级燃烧技术在5 000t/d熟料生产线的应用实践[J]. 水泥技术, 2022, 1(2): 46-49.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[5] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[6] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[7] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[8] WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure[J]. Cement Technology, 2018, 1(1): 83 -88 .
[9] LIU Xudong. How to Execute 60 kV Transmission Line EPC Project[J]. Cement Technology, 2018, 1(1): 89 -91 .
[10] YAO Piqiang, HAN Hui, YU Weimin. Study on Calcining and Preliminary Application of New Low Calcium Cement[J]. Cement Technology, 2018, 1(2): 17 -25 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview