Please wait a minute...
水泥技术, 2025, 1(3): 65-70    doi: 10.19698/j.cnki.1001-6171.20253065
  实验研究 本期目录 | 过刊浏览 | 高级检索 |
生物质(竹炭)替代燃料在水泥生产中的应用
安徽海螺水泥股份有限公司宁国水泥厂,安徽  宁国  241312
Application of Biomass (Bamboo Charcoal) Alternative Fuel in Cement Production
Ningguo Cement Plant, Anhui Conch Cement Co., Ltd. , Ningguo Anhui 241312, China
下载:  PDF (30448KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物质竹炭与传统煤炭相比,更为“绿色、清洁”,可以部分替代水泥生产所需传统化石能源。分析了生物质竹炭的工业特性和结构特性,在5 000t/d熟料生产线中进行了替代燃料工业试验;试验时,生物质竹炭按照60%重量掺比与煤炭分别计量后搭配入煤磨,混合粉磨后送至煤粉仓,再经计量后送至回转窑及分解炉内燃烧。试验结果表明,掺加生物质竹炭对水泥回转窑运行基本无不良影响;生物质竹炭碱含量较高,生产时应关注熟料碱含量,合理控制使用比例;窑尾NOX及SO2排放量有所增加,可以通过优化风、煤、料配比或在温度控制较低的分解炉内使用,减少排放;熟料3d强度提高0.7MPa,28d强度提高1.8MPa,熟料质量明显改善,吨熟料标准煤耗下降了61.57kg/t,按年产150×104t熟料计,年可减排CO2约25.5×104t,节能减排降碳效果显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周德刚
邱平
朱强
关键词:  煤制炭  生物质竹炭  工艺流程  替代燃料  节能降碳    
Abstract: Compared to traditional coal, biomass bamboo charcoal is more "green and clean," and can partially replace conventional fossil fuels required for cement production. This study analyzes the industrial and structural characteristics of biomass bamboo charcoal and conducts industrial substitution trials in a 5 000t/d clinker production line. During the trial, biomass bamboo charcoal was blended with coal at a 60% weight ratio, separately metered, fed into the coal mill, ground into a mixed powder, and then transported to the coal powder silo. After further metering, it was sent to the rotary kiln and precalciner for combustion. The results show that adding biomass bamboo charcoal has no significant adverse effects on the operation of the cement rotary kiln. However, due to its high alkali content, attention should be paid to the clinker's alkali levels, and the blending ratio should be reasonably controlled. Emissions of NOX and SO2 at the kiln tail increased slightly, but this can be mitigated by optimizing the air-coal-material ratio or using the charcoal in the precalciner at lower temperatures. The clinker's 3d strength increased by 0.7MPa, and its 28d strength improved by 1.8MPa, indicating enhanced clinker quality. The standard coal cons umption per ton of clinker decreased by 61.57kg/t. Based on an annual production of 1.5 million tons of clinker, this substitution could reduce CO2 emissions by approximately 255 000 tons per year, demonstrating significant energy-saving, emission-reducing, and carbon-cutting effects.
Key words:  coal-derived charcoal    biomass bamboo charcoal    process flow    alternative fuel    energy-saving and carbon reduction
收稿日期:  2024-12-18                出版日期:  2025-05-25      发布日期:  2025-05-25      整期出版日期:  2025-05-25
ZTFLH:  TQ172.44  
基金资助: 国家重点研发计划项目(2024YFE0210500)
作者简介:  周德刚(1972—),男,硕士,工程师,主要从事水泥机械、替代燃料、节能降碳等研究。E-mail:cocnchzdg@sina.com
引用本文:    
周德刚, 邱平, 朱强. 生物质(竹炭)替代燃料在水泥生产中的应用[J]. 水泥技术, 2025, 1(3): 65-70.
ZHOU Degang, QIU Ping, ZHU Qiang. Application of Biomass (Bamboo Charcoal) Alternative Fuel in Cement Production. Cement Technology, 2025, 1(3): 65-70.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20253065  或          http://www.cemteck.com/CN/Y2025/V1/I3/65
[1] 马娇媚, 彭学平, 范道荣, 王佳硕, 杨欢迎.

氢能耦合替代燃料悬浮煅烧水泥技术研究 [J]. 水泥技术, 2024, 1(6): 7-14.

[2] 高为民, 马娇媚, 张伟, 隋明洁, 俞为民. 5 000t/d水泥熟料生产线节能降碳升级改造实践[J]. 水泥技术, 2024, 1(5): 19-25.
[3] 杨杰, 刘光辉, 杨钧, 梁鹏, 周建. 篦冷机托辊装置流水线装配工艺探讨[J]. 水泥技术, 2024, 1(2): 19-23.
[4] 柳学忠, 周卫兵, 徐保国, 朱教群, 许元正.

水泥半终粉磨系统生产工艺优化改造 [J]. 水泥技术, 2023, 1(6): 41-46.

[5] 马娇媚, 赵亮, 张建国, 王科学. 水泥熟料烧成系统能效提升技术的研究及应用[J]. 水泥技术, 2023, 1(2): 20-.
[6] 马娇媚, 王克东, 隋明洁, 高为民. 万吨级熟料烧成系统节能降碳[J]. 水泥技术, 2023, 1(1): 15-23.
[7] 石巍, 刘骏, 闫十一.
美国水泥市场及水泥工业概况
[J]. 水泥技术, 2020, 1(2): 88-92.
[8] 韩仲琦.
国外水泥工业消纳废弃物的现状(下)
[J]. 水泥技术, 2020, 1(1): 57-61.
[9] 韩仲琦.
国外水泥工业消纳废弃物的现状(上)
[J]. 水泥技术, 2019, 1(6): 84-90.
[10] 徐元元.
TRMS45.2矿渣辊磨的工作原理及调试
[J]. 水泥技术, 2018, 1(2): 43-46.
[11] 侯国锋, 张黎, 褚旭, 王复然, 石国平, 许芬. 辊压机终粉磨系统生产钢铁渣粉工艺设计及优化[J]. 水泥技术, 2017, 1(2): 45-48.
[12] 王新频, 梁树峰, 赵娇, 史伟, 王冬. 国外水泥工业替代燃料的应用进展[J]. 水泥技术, 2016, 1(5): 40-46.
[13] 董艳超, 周建, 杨松. 篦冷机连接板加工工艺改进[J]. 水泥技术, 2016, 1(3): 81-83.
[14] 石光, 刘箴, 聂文海, 宋留庆, 徐昕.
辊磨在铅锌尾矿渣综合利用中的应用
[J]. 水泥技术, 2015, 1(3): 45-48.
[15] 石光, 刘箴, 赵剑波, 王庆利, 彭凌云. TRMS43.4矿渣辊磨的特点及应用[J]. 水泥技术, 2014, 1(2): 38-41.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview