Please wait a minute...
水泥技术, 2025, 1(1): 20-24    doi: 10.19698/j.cnki.1001-6171.20251020
  技术改造 本期目录 | 过刊浏览 | 高级检索 |
水泥工业窑灰-石膏湿法脱硫系统物料平衡及水平衡工艺流程优化
1 天山材料股份有限公司,上海  200126; 2 天津水泥工业设计研究院有限公司,天津  300400
Optimization of Material Balance and Water Balance Process Flow for Cement Industry Kiln Ash-gypsum Wet Desulfurization System
1 Tianshan Materials Co., Ltd. , Shanghai 200126, China;
2 Tianjin Cement Industry Design & Research Institute Co., Ltd. , Tianjin 300400, China
下载:  PDF (1699KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于国家对大气污染物排放标准的日益严格,众多水泥厂采用窑灰-石膏湿法脱硫系统以实现高效脱硫。然而,常规窑灰-石膏湿法脱硫系统存在物料平衡及水平衡工艺流程复杂、投资及运行成本较高、占地面积大等问题。基于常规窑灰-石膏湿法脱硫工艺提出了一种优化方案,通过取消一级、二级石膏脱水设备及相应的配套设施,简化了脱硫工艺流程,并将事故浆液直接输送至窑头篦式冷却机,实现了物料平衡及水平衡工艺流程的简化。此外,在该优化方案中,事故浆液罐新增了向窑头篦式冷却机内喷入浆液的功能,通过流量计监测浆液流量,可调节物料平衡。以国内某5 000t/d熟料生产线为例,此优化方案降低了一次性投资约90万元,每年可节约运行成本17.35万元,经济效益显著,对窑头废气及熟料质量的影响较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯海军
王道斌
关键词:  湿法脱硫  石膏脱水  物料平衡  事故浆液  流量计    
Abstract: Considering the increasingly strict national standards for air pollutant emissions, many cement plants adopt kiln ash-gypsum wet desulfurization systems to achieve efficient desulfurization. However, the conventional kiln ash-gypsum wet desulfurization system has problems such as complex material balance and water balance process flow, high investment and operating costs, and large footprint. An optimization scheme based on the conventional kiln ash-gypsum wet desulfurization process is proposed, which simplifies the desulfurization process by eliminating the first and second stage gypsum dehydration equipment and corresponding supporting facilities. The accident slurry is directly transported to the grate cooler, achieving the simplification of material balance and water balance process flow. In addition, in this optimization plan, the accident slurry tank has added the function of spraying slurry into the grate cooler at the kiln head. The slurry flow rate can be monitored by a flowmeter to adjust the material balance. Taking a domestic 5 000 t/d clinker production line as an example, this optimization plan reduces the one-time investment by about 0.9 million yuan and can save operating costs of 0.173 5 million yuan per year. The economic benefits are significant, and the impact on kiln head exhaust gas and clinker quality is relatively small.
Key words:  wet desulfurization    gypsum dehydration    material balance    accident slurry    flowmeter
收稿日期:  2024-09-04                出版日期:  2025-01-25      发布日期:  2025-01-25      整期出版日期:  2025-01-25
ZTFLH:  TQ172.622.19  
引用本文:    
冯海军, 王道斌. 水泥工业窑灰-石膏湿法脱硫系统物料平衡及水平衡工艺流程优化[J]. 水泥技术, 2025, 1(1): 20-24.
FENG Haijun, WANG Daobin. Optimization of Material Balance and Water Balance Process Flow for Cement Industry Kiln Ash-gypsum Wet Desulfurization System. Cement Technology, 2025, 1(1): 20-24.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20251020  或          http://www.cemteck.com/CN/Y2025/V1/I1/20
[1] 马纯辉, 李志丹, 魏灿, 张闯, 赵华. 水泥企业在线物料平衡管理系统的应用[J]. 水泥技术, 2024, 1(1): 64-68.
[2] 王爱琴, 罗振, 于浩波. 水泥湿法脱硫项目建设新技术与管理新模式[J]. 水泥技术, 2023, 1(5): 38-42.
[3] 张高科, 陈克政, 赵光辉. 石灰石-石膏湿法脱硫系统在水泥生产中的应用[J]. 水泥技术, 2023, 1(1): 68-73.
[4] 罗振, 王爱琴. 湿法脱硫系统不同工艺布置方式的对比分析[J]. 水泥技术, 2022, 1(3): 52-55.
[5] 李小军, 宋良山, 陈亚强, 白雪瑞, 穆飞. 辊压机联合粉磨系统提产节能的改造[J]. 水泥技术, 2021, 1(5): 70-72.
[6] 金志民, 王道斌, 张熙格, 张舒予. 烟气湿法脱硫系统简介及石膏脱水装置的改进[J]. 水泥技术, 2021, 1(5): 40-42.
[7] 于浩波, 罗振, 王爱琴.
湿法脱硫系统对窑尾烟囱的影响
[J]. 水泥技术, 2021, 1(2): 41-43.
[8] 郎济涵, 张滨.
增湿塔在湿法脱硫上的应用实践
[J]. 水泥技术, 2021, 1(1): 43-45.
[9] 王爱琴, 于浩波, 罗振, 李志军.
石灰石-石膏湿法烟气脱硫智能化控制系统
[J]. 水泥技术, 2020, 1(6): 30-32.
[10] 刘翠.
水泥强度异常下降原因分析及解决措施
[J]. 水泥技术, 2020, 1(5): 82-86.
[11] 唐全胜.
威尔巴流量测量系统的介绍及应用
[J]. 水泥技术, 2020, 1(1): 37-39.
[12] 王春丽.
水泥窑尾烟气湿法脱硫工艺水平衡问题的探讨
[J]. 水泥技术, 2019, 1(6): 91-94.
[13] 王道斌, 于浩波, 吕威.
NSCI 5 000t/d水泥生产线脱硫工程的水平衡探讨
[J]. 水泥技术, 2019, 1(4): 74-78.
[14] 范文礼, 国东, 杨海林.
转子秤在生料入窑系统中的应用
[J]. 水泥技术, 2019, 1(3): 100-102.
[15] 罗振.
水泥窑石灰石-石膏湿法脱硫工艺介绍
[J]. 水泥技术, 2018, 1(4): 85-87.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview