waste heat power generation, aqc boiler,insulation design, numerical simulation, temperature field ,"/> <p class="MsoNormal"> <span>AQC</span>锅炉进风管道保温数值模拟研究
Please wait a minute...
水泥技术, 2023, 1(6): 60-67    doi: 10.19698/j.cnki.1001-6171.20236060
  节能减排 本期目录 | 过刊浏览 | 高级检索 |

AQC锅炉进风管道保温数值模拟研究

 1 中材节能股份有限公司,天津  300499; 2 华北电力大学,河北  保定  071003;    

Numerical Simulation Study on Insulation of the Inlet Duct of AQC Boiler

1. Sinoma Energy Conservation Ltd, Tianjin 300499, China;

2. North China Electric Power University, Baoding Hebei 071003, China

下载:  PDF (11045KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

水泥窑余热电站AQC锅炉进风管道及其保温设计对锅炉运行及其热量利用影响较大,为减少热损失,提高余热回收效率,需对进风管道采取保温措施。本文通过分析AQC锅炉进风管道换热机理,建立了AQC锅炉进风管道物理场模型,并利用Fluent软件进行了数值模拟计算,获得了不同内保温层厚度的AQC锅炉进风管道温度场,以及热风温度随管道长度变化的线性关系曲线。数值模拟结果表明,AQC锅炉进风管道(?3 620mm×8mm)内保温层厚度为70mm、耐磨浇注料及外保温层厚度为100mm时,为最经济、合理的保温层厚度设计方案。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王炯
齐树龙
关键词:  余热发电  AQC锅炉  保温设计  数值模拟  温度场    
Abstract: 

The inlet duct and insulation design of AQC boiler in cement kiln waste heat power plant have a significant impact on boiler operation and heat utilization. To reduce heat loss and improve waste heat recovery efficiency, insulation measures need to be taken for the inlet duct. This article analyzes the heat transfer mechanism of the AQC boiler inlet duct, establishes a physical field model of the AQC boiler inlet duct, and conducts numerical simulation calculations using software of Fluent. The temperature field of the AQC boiler inlet duct with different inner insulation layer thickness and the linear relationship curve of the hot air temperature with the length of the duct are obtained. The numerical simulation results indicate that the most economical and reasonable design scheme for insulation layer thickness is when the thickness of the inner insulation layer of the inlet duct?3 620mm×8mmof the AQC boiler is 70mm, and the thickness of the wear-resistant casting material and outer insulation layer is 100mm.

Key words:  waste heat power generation')" href="#">

waste heat power generation    aqc boiler    insulation design    numerical simulation    temperature field

收稿日期:  2023-05-09      修回日期:  2023-11-25           出版日期:  2023-11-25      发布日期:  2023-11-25      整期出版日期:  2023-11-25
ZTFLH:  TM621.2   
引用本文:    
王炯, 齐树龙.

AQC锅炉进风管道保温数值模拟研究 [J]. 水泥技术, 2023, 1(6): 60-67.
WANG Jiong, QI Shulong.

Numerical Simulation Study on Insulation of the Inlet Duct of AQC Boiler . Cement Technology, 2023, 1(6): 60-67.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20236060  或          http://www.cemteck.com/CN/Y2023/V1/I6/60
[1] 张国平, 邹军辉, 谢华. 应用窑头循环风系统提高水泥窑余热发电量的实践[J]. 水泥技术, 2025, 1(3): 11-15.
[2] 武猛, 杨新鑫, 王广顺.

水泥生产余热发电系统一键并网技术及应用 [J]. 水泥技术, 2025, 1(2): 58-61.

[3] 栗永刚, 王亚维, 刘晓飞. 9MW余热发电机组循环水泵节能技术改造[J]. 水泥技术, 2025, 1(1): 31-34.
[4] 王炯, 邹军辉, 张国平, 曹伟.

旁路放风余热循环利用系统优化及经济性分析 [J]. 水泥技术, 2024, 1(6): 27-30.

[5] 周莹莹, 田博, 田哲, 向峥, 裴凌旭.

水泥工厂清洁能源发电方式分析 [J]. 水泥技术, 2024, 1(4): 62-64.

[6] 赵龙.

6 500t/d水泥生产线余热发电孤网运行技术改进 [J]. 水泥技术, 2024, 1(3): 43-46.

[7] 张鑫. 管道应力分析软件AutoPSA中Glif算法报告解读与布管技巧[J]. 水泥技术, 2024, 1(2): 41-49.
[8] 王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
[9] 周莹莹, 田博, 向峥, 田哲.

基于水泥厂电能计量系统的新能源发电接入点的选择 [J]. 水泥技术, 2023, 1(6): 82-85.

[10] 李俊. 余热发电汽轮机真空抽气系统节能改造[J]. 水泥技术, 2022, 1(5): 68-71.
[11] 李俊. 余热发电DCS & DEH控制系统改造[J]. 水泥技术, 2022, 1(1): 92-96.
[12] 王巧林. 水泥回转窑孤网运行经验探讨[J]. 水泥技术, 2021, 1(4): 94-96.
[13] 王权, 秦学恒. 水泥熟料生产线余热发电废水零排放综合利用实例[J]. 水泥技术, 2020, 1(1): 88-90.
[14] 王海涛, 贾津秋. 余热发电热力系统不平衡原因及管理与维护[J]. 水泥技术, 2019, 1(4): 66-68.
[15] 杨胜昆.
膨胀节补偿及支架脱空失效的原因分析
[J]. 水泥技术, 2019, 1(1): 99-102.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview