Please wait a minute...
水泥技术, 2025, 1(1): 31-34    doi: 10.19698/j.cnki.1001-6171.20251031
  技术改造 本期目录 | 过刊浏览 | 高级检索 |
9MW余热发电机组循环水泵节能技术改造
天瑞新登郑州水泥有限公司,河南  郑州  452470
Energy Saving Technology Transformation of Circulating Water Pump for 9MW Waste Heat Power Generation Unit
Tianrui Xindeng Zhengzhou Cement Co., Ltd. , Zhengzhou Henan 452470, China
下载:  PDF (16120KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 某5 000t/d水泥熟料生产线配套9MW余热发电系统,使用两台4级(4个磁极)10kV高压电机驱动老式卧式双吸循环水泵,存在循环水泵转速较高、能效较低、耗电量大、机械密封易损坏、检维修成本较高等问题。通过评估循环水泵末端换热设备热工性能,分析冷却塔性能参数,应用“三元流动理论”采用CFD仿真模拟技术进行流场模拟分析,设计使用新型“3+1”高效流体节能循环水泵进行技术改造,配套更换6级(6个磁极)转速较低(980r/min)高压电机。技改后,单台循环水泵小时耗电量可降低约71kW/h,每年可节约电费约24万元,循环水泵及电机的机械密封和轴承更换频次较少,设备检维修成本大幅降低,节能效果和经济效益显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗永刚
王亚维
刘晓飞
关键词:  余热发电  循环水泵  三元流动理论  CFD仿真模拟  节能减排    
Abstract: A 5 000t/d cement clinker production line is equipped with a 9MW waste heat power generation system, which uses two 4-stage (4 magnetic poles) 10kV high-voltage motors to drive an old-fashioned horizontal double suction circulating water pump. There are problems including high circulating water pump speed, low energy efficiency, high power consumption, vulnerable mechanical seals, and high maintenance costs. By evaluating the thermal performance of the end heat exchange equipment of the circulating water pump, analyzing the performance parameters of the cooling tower, applying the “Three Element Flow Theory” and using CFD simulation technology for flow field simulation analysis, a new “3+1” high-efficiency fluid energy-saving circulating water pump is designed for technical transformation, and a 6-stage (6 magnetic poles) low speed (980r/min) high-voltage motor is replaced with a set. After the technological transformation, the hourly power consumption of a single circulating water pump can be reduced by about 71 kW/h, saving about 0.24 million yuan in electricity bills per year. The mechanical seals and bearings of the circulating water pump and motor are replaced less frequently, and the equipment maintenance costs are significantly reduced. The energy-saving effect and economic benefits are significant.
Key words:  waste heat power generation    water circulating pump    triple flow theory    CFD simulation    conserve energy and reduce emissions
收稿日期:  2024-04-20                出版日期:  2025-01-25      发布日期:  2025-01-25      整期出版日期:  2025-01-25
ZTFLH:  TQ172.625.9  
引用本文:    
栗永刚, 王亚维, 刘晓飞. 9MW余热发电机组循环水泵节能技术改造[J]. 水泥技术, 2025, 1(1): 31-34.
LI Yonggang, WANG Yawei, LIU Xiaofei. Energy Saving Technology Transformation of Circulating Water Pump for 9MW Waste Heat Power Generation Unit. Cement Technology, 2025, 1(1): 31-34.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20251031  或          http://www.cemteck.com/CN/Y2025/V1/I1/31
[1] 秦中华, 王娜, 石国平, 李铭哲, 王维莉.

辊压机联合粉磨系统节能降碳技术装备研发与应用 [J]. 水泥技术, 2025, 1(2): 5-11.

[2] 武猛, 杨新鑫, 王广顺.

水泥生产余热发电系统一键并网技术及应用 [J]. 水泥技术, 2025, 1(2): 58-61.

[3] 王炯, 邹军辉, 张国平, 曹伟.

旁路放风余热循环利用系统优化及经济性分析 [J]. 水泥技术, 2024, 1(6): 27-30.

[4] 周莹莹, 田博, 田哲, 向峥, 裴凌旭.

水泥工厂清洁能源发电方式分析 [J]. 水泥技术, 2024, 1(4): 62-64.

[5] 赵龙.

6 500t/d水泥生产线余热发电孤网运行技术改进 [J]. 水泥技术, 2024, 1(3): 43-46.

[6] 张鑫. 管道应力分析软件AutoPSA中Glif算法报告解读与布管技巧[J]. 水泥技术, 2024, 1(2): 41-49.
[7] 邹政. 太阳能光伏电站在水泥厂节能减排中的应用[J]. 水泥技术, 2024, 1(2): 78-81.
[8] 王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
[9] 王炯, 齐树龙.

AQC锅炉进风管道保温数值模拟研究 [J]. 水泥技术, 2023, 1(6): 60-67.

[10] 周莹莹, 田博, 向峥, 田哲.

基于水泥厂电能计量系统的新能源发电接入点的选择 [J]. 水泥技术, 2023, 1(6): 82-85.

[11] 甘天锦, 阮黎明. 浅谈LBTF2750型推动式篦式冷却机技术改造[J]. 水泥技术, 2023, 1(5): 62-67.
[12] 李俊. 余热发电汽轮机真空抽气系统节能改造[J]. 水泥技术, 2022, 1(5): 68-71.
[13] 李俊. 余热发电DCS & DEH控制系统改造[J]. 水泥技术, 2022, 1(1): 92-96.
[14] 王巧林. 水泥回转窑孤网运行经验探讨[J]. 水泥技术, 2021, 1(4): 94-96.
[15] 王权, 秦学恒. 水泥熟料生产线余热发电废水零排放综合利用实例[J]. 水泥技术, 2020, 1(1): 88-90.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview