Please wait a minute...
水泥技术, 2023, 1(5): 62-67    doi: 10.19698/j.cnki.1001-6171.20235062
  生产技术 本期目录 | 过刊浏览 | 高级检索 |
浅谈LBTF2750型推动式篦式冷却机技术改造
甘肃省金昌水泥(集团)有限责任公司,甘肃  金昌  737200
Discussion on the Technical Transformation of LBTF2750 Pusher Grate Cooler
Gansu Jinchang Cement (Group) Co., Ltd. , Jinchang Gansu 737200, China
下载:  PDF (25174KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 LBTF2750型充气梁推动式篦式冷却机存在急冷篦床结构及配风设计不合理,二、三次风温低,易出现“风短路”及内漏风、充气梁与篦板配套设计有缺陷等问题,无法满足窑提产后的生产需求。通过更换新的急冷篦床并调整风机配置,将活动篦床一段充气梁改为风室供风,拆除并修正急冷篦床耐磨墙,增设“推雪人”装置等措施,有效解决了上述问题。改造后,急冷篦床料层厚度可控制在800~1 000mm,篦下风量无法吹穿料层;二次风温>1 040℃,三次风温>920℃;水泥磨台时产量提高了5%,篦冷机热回收效率和冷却效率提高,提产增效效果明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘天锦
阮黎明
关键词:  急冷篦床  充气梁  热回收效率  冷却效率  节能减排    
Abstract: The LBTF2750 inflatable beam pusher grate cooler has issues with the structure of the rapid cooling grate bed and the unreasonable air distribution design. The secondary and tertiary air temperatures are low, leading to "air escape branch" and internal air leakage. Additionally, there are design flaws in the matching of the inflatable beam and the grate plate, which cannot meet the production requirements after kiln production. By replacing the rapid cooling grate bed and adjusting the fan configuration, converting the inflatable beam of the movable grate bed into an air chamber for air supply, demolishing and correcting the wear-resistant wall of the rapid cooling grate bed, and adding a "snow pusher" device, these problems have been effectively solved. After the transformation, the thickness of the material layer on the rapid cooling grate bed can be controlled within 800-1 000mm, and the air flow under the grate cannot blow through the material layer. The temperature of the second air is above 1 040℃, and the temperature of the tertiary air is above 920℃. The production output during cement grinding has increased by 5%, and the heat recovery efficiency and cooling efficiency of the grate cooler have improved significantly, resulting in obvious production increase and efficiency improvement.
Key words:  rapid cooling grate bed    inflatable beam    heat recovery efficiency    cooling efficiency    energy saving and emission reduction
收稿日期:  2023-03-26                出版日期:  2023-09-25      发布日期:  2023-09-25      整期出版日期:  2023-09-25
ZTFLH:  TQ172.622.4  
引用本文:    
甘天锦, 阮黎明. 浅谈LBTF2750型推动式篦式冷却机技术改造[J]. 水泥技术, 2023, 1(5): 62-67.
GAN Tianjin, RUAN Liming. Discussion on the Technical Transformation of LBTF2750 Pusher Grate Cooler. Cement Technology, 2023, 1(5): 62-67.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20235062  或          http://www.cemteck.com/CN/Y2023/V1/I5/62
[1] 张国平, 邹军辉, 谢华. 应用窑头循环风系统提高水泥窑余热发电量的实践[J]. 水泥技术, 2025, 1(3): 11-15.
[2] 秦中华, 王娜, 石国平, 李铭哲, 王维莉.

辊压机联合粉磨系统节能降碳技术装备研发与应用 [J]. 水泥技术, 2025, 1(2): 5-11.

[3] 栗永刚, 王亚维, 刘晓飞. 9MW余热发电机组循环水泵节能技术改造[J]. 水泥技术, 2025, 1(1): 31-34.
[4] 王炯, 邹军辉, 张国平, 曹伟.

旁路放风余热循环利用系统优化及经济性分析 [J]. 水泥技术, 2024, 1(6): 27-30.

[5] 周桂胜.

5 000t/d水泥熟料生产线节能降耗改造 [J]. 水泥技术, 2024, 1(3): 32-37.

[6] 邹政. 太阳能光伏电站在水泥厂节能减排中的应用[J]. 水泥技术, 2024, 1(2): 78-81.
[7] 王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
[8] 张传仁, 郭红军. 纵向控制流固定床在篦冷机改造中的应用[J]. 水泥技术, 2022, 1(4): 27-33.
[9] 崔洪坤, 刘志强. 4 500t/d水泥熟料生产线节能降耗优化措施[J]. 水泥技术, 2022, 1(4): 21-26.
[10] 张晓伟. LBTF5500篦冷机熟料温度过高的解决措施[J]. 水泥技术, 2021, 1(5): 76-78.
[11] 马娇媚, 彭学平, 狄东仁, 赵亮, 陈昌华, 李波, 王伟. 水泥低能耗先进烧成技术研究与应用[J]. 水泥技术, 2019, 1(3): 21-28.
[12] 汪佳杰.
三次风锅炉在水泥窑余热电站的应用
[J]. 水泥技术, 2018, 1(4): 94-96.
[13] 王宜兵, 邵明珠.
窑头电收尘器电改电节能减排技术改造
[J]. 水泥技术, 2018, 1(4): 82-84.
[14] 孙海全. 5 000t/d窑头电改袋方案解析[J]. 水泥技术, 2017, 1(4): 75-77.
[15] 马娇媚, 刘芳, 郭天代, 陶从喜, 彭学平. 5 500t/d六级预热器烧成系统的开发应用[J]. 水泥技术, 2017, 1(4): 22-25.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview