Please wait a minute...
水泥技术, 2024, 1(5): 65-68    doi: 10.19698/j.cnki.1001-6171.20245065
  实验研究 本期目录 | 过刊浏览 | 高级检索 |
除氯系统对水泥窑协同处置含氯固废的影响分析
安徽海螺环保集团有限公司,安徽  芜湖  241000
Analysis of the Impact of Chlorine Removal System on the Collaborative Disposal of Chlorine Containing Solid Waste in Cement Kilns
Anhui Conch Environmental Protection Group Co., Ltd. , Wuhu Anhui 241000, China
下载:  PDF (1422KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥窑协同处置固废技术具有环境友好、处置高效、技术可靠等显著优势,但固体废物的氯离子含量偏高,导致预分解窑系统结皮严重,固废入窑处置量减少。分析了水泥熟料煅烧过程中氯盐在窑尾系统内循环富集的过程,对比研究了除氯系统开启前后以及不同固废投加量对水泥窑系统运行的影响。结果表明,除氯系统的运行显著降低了氯元素在窑系统的循环量,减少了预分解窑系统结皮现象,提高了固废投加量。在实际生产过程中,应结合不同阶段原燃材料的氯含量本底浓度及固废中的有害元素成分情况,及时调整除氯系统放风率及开启时长,以优化除氯系统运行成本及热能损失。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任明政
方磊
张新勇
李永帅
关键词:  协同处置  氯离子  固废投加量  放风率    
Abstract: The collaborative disposal of solid waste in cement kilns has significant advantages such as environmental friendliness, efficient disposal, and reliable technology. However, the high chloride ion content in solid waste leads to severe crust formation in the pre decomposition kiln system, resulting in a reduction in the amount of solid waste disposed of in the kiln. The process of chloride salt circulation and enrichment in the preheater system during the calcination of cement clinker was analyzed, and the effects of the chlorine removal system before and after opening, as well as different solid waste dosages, on the operation of the cement kiln system were compared and studied. The results showed that the operation of the chlorine removal system significantly reduced the circulation of chlorine elements in the kiln system, reduced the phenomenon of crust formation in the pre decomposition kiln system, and increased the amount of solid waste added. In the actual production process, the chlorine content and background concentration of raw materials at different stages, as well as the harmful element composition in solid waste, should be combined to adjust the exhaust rate and opening time of the chlorine removal system in a timely manner, in order to optimize the operating cost and heat loss of the chlorine removal system.
Key words:  collaborative disposal    chloride ion    quantity of solid waste added    bypass rate
收稿日期:  2024-03-07                出版日期:  2024-09-25      发布日期:  2024-09-25      整期出版日期:  2024-09-25
ZTFLH:  TQ172.622.19  
引用本文:    
任明政, 方磊, 张新勇, 李永帅. 除氯系统对水泥窑协同处置含氯固废的影响分析[J]. 水泥技术, 2024, 1(5): 65-68.
REN Mingzheng, FANG Lei, ZHANG Xinyong, LI Yongshuai. Analysis of the Impact of Chlorine Removal System on the Collaborative Disposal of Chlorine Containing Solid Waste in Cement Kilns. Cement Technology, 2024, 1(5): 65-68.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20245065  或          http://www.cemteck.com/CN/Y2024/V1/I5/65
[1] 孔睿睿, 葛楠楠, 张磊, 高翔, 齐怀莲. 水泥窑协同处置废FCC催化剂的生产实践[J]. 水泥技术, 2024, 1(2): 71-77.
[2] 冯云, 李榛, 赵峰, 张文涛, 闫可可. 降低水泥水溶性铬(Ⅵ)方法研究综述[J]. 水泥技术, 2024, 1(1): 78-82.
[3] 陈锐章, 陶从喜, 赵必胜, 刘超, 罗辉. 水泥窑协同处置城市干化污泥技术及其工程化应用[J]. 水泥技术, 2023, 1(3): 25-31.
[4] 冯云, 李榛, 张文涛, 李佳, 赵峰. 含氟污泥对熟料凝结时间影响的研究进展[J]. 水泥技术, 2023, 1(3): 91-96.
[5] 陈龙, 冯云, 郑金召, 李榛. 协同处置危固废过程中熟料频繁结球的分析处置[J]. 水泥技术, 2023, 1(1): 53-61.
[6] 王玉楷, 朱志领. 危险固体废弃物对水泥窑工况的影响[J]. 水泥技术, 2022, 1(6): 77-82.
[7] 吴晓六, 张冬冬, 王朝雄. 协同处置固废过程中窑尾烟气HCl的达标排放[J]. 水泥技术, 2022, 1(4): 72-75.
[8] 赵玉刚, 朱海宾, 赵叡清. 水泥窑协同处置无机污泥技术的实践[J]. 水泥技术, 2022, 1(3): 56-62.
[9] 张冬冬, 王朝雄, 方明.
水泥窑协同处置垃圾焚烧飞灰的技术途径
[J]. 水泥技术, 2020, 1(6): 17-22.
[10] 韩仲琦.
国外水泥工业消纳废弃物的现状(下)
[J]. 水泥技术, 2020, 1(1): 57-61.
[11] 方明, 张冬冬, 王朝雄.
基于静脉产业园思维的水泥窑协同处置项目实践
[J]. 水泥技术, 2020, 1(1): 62-67.
[12] 韩仲琦.
国外水泥工业消纳废弃物的现状(上)
[J]. 水泥技术, 2019, 1(6): 84-90.
[13] 方明, 刘亚雷, 王朝雄.
机械炉排炉与水泥窑联合处置生活垃圾技术研究及应用
[J]. 水泥技术, 2019, 1(5): 85-89.
[14] 王道斌, 于浩波, 吕威.
NSCI 5 000t/d水泥生产线脱硫工程的水平衡探讨
[J]. 水泥技术, 2019, 1(4): 74-78.
[15] 韩德夫. 协同处置城镇污泥水泥窑窑尾电改袋的设计与应用[J]. 水泥技术, 2018, 1(5): 88-90.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[5] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[6] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[7] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[8] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
[9] ZHANG Jiangtao, LIU Baoliang. Processing of the Wet Materials of the Winter Cement Factory in the High Cold Region[J]. Cement Technology, 2018, 1(1): 74 -82 .
[10] WANG Qingjiang. Analysis on Mechanical Performance of Typical Joints in Tubular Frame Structure[J]. Cement Technology, 2018, 1(1): 83 -88 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview