Please wait a minute...
水泥技术, 2025, 1(4): 84-88    doi: 10.19698/j.cnki.1001-6171.20254084
  生产技术 本期目录 | 过刊浏览 | 高级检索 |

利用铅锌选矿尾矿、燃煤炉渣生产低碱水泥的实践

成县祁连山水泥有限公司,甘肃  陇南  742508

Practice of Using Lead-zinc Ore Tailings and Coal-Fired Slag to Produce Low Alkali Cement

Chengxian Qilian Mountain Cement Co., Ltd. , Longnan Gansu 742508, China 

下载:  PDF (1266KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

针对铅锌选矿尾矿堆存造成的生态环境问题,采用铅锌选矿尾矿粉与燃煤炉渣作为硅铝质原料,结合石灰石、铜冶炼渣,通过四组分配比(石灰石75.20%、铅锌选矿尾矿粉10.45%、燃煤炉渣12.55%、铜冶炼渣1.80%),成功制备出低碱水泥熟料。实践表明,该生产工艺显著优化了熟料性能,液相形成温度降低8℃,熟料煤耗减少4.0kg/t28d抗压强度达61.3MPa,且SO2排放稳定达标。2023~2024年累计消纳工业废渣23.8×104t,减少尾矿库容6.2×104m3,年节约燃煤成本91万元,经济效益显著。同时,该技术方案通过微量金属元素的矿化作用改善易烧性,有效解决了废渣堆存污染问题,实现了“排废+利废”协同作用,为水泥行业绿色转型提供了工业化示范。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王刚
关键词:  低碱水泥熟料  工业废渣  资源综合利用  绿色转型  节能减排    
Abstract: 

In response to the ecological environment problems caused by the storage of lead-zinc ore tailings, low alkali cement clinker was successfully prepared.The preparation method involved the use of lead-zinc ore tailings powder and coal-fired slag as silicon aluminum raw materials, combined with limestone and copper smelting slag. The preparation process involved four distribution ratios:limestone 75.20%, tailings powder 10.45%, coal-fired slag 12.55%, and copper smelting slag 1.80%. Practice has shown that this production process significantly optimizes the performance of clinker, reduce the liquid phase formation temperature by 8, decrease physical coal consumption by 4.0kg/t, achieves a 28 day compressive strength of 61.3MPa, and comply with the standard for stable SO2 emissions. From 2023 to 2024, a total of 23.8×104t of industrial waste will be consumed, reducing the tailings storage capacity by 6.2×104m3 cubic meters and saving 910 000 yuan in coal costs annually, resulting in significant economic benefits. At the same time, this technical solution enhances the combustibility through the mineralization of trace metal elements, effectively solving the problem of waste residue pollution.It achieves a synergistic effect of "waste discharge+waste utilization", and provides industrial demonstration for the green transformation of the cement industry.

Key words:  low alkali cement clinker    industrial waste residue    comprehensive utilization of resources    green transformation    energy conservation and emission reduction
收稿日期:  2024-10-27      修回日期:  2025-07-25           出版日期:  2025-07-25      发布日期:  2025-07-25      整期出版日期:  2025-07-25
ZTFLH:  TQ172.44  
作者简介:  王 刚(1973—),男,硕士,高级工程师,主要从事水泥生产技术质量管理。E-mail:Qlswg1123@163.com
引用本文:    
王刚.

利用铅锌选矿尾矿、燃煤炉渣生产低碱水泥的实践 [J]. 水泥技术, 2025, 1(4): 84-88.
WANG Gang.

Practice of Using Lead-zinc Ore Tailings and Coal-Fired Slag to Produce Low Alkali Cement . Cement Technology, 2025, 1(4): 84-88.

链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20254084  或          http://www.cemteck.com/CN/Y2025/V1/I4/84
[1] 张国平, 邹军辉, 谢华. 应用窑头循环风系统提高水泥窑余热发电量的实践[J]. 水泥技术, 2025, 1(3): 11-15.
[2] 张宏, 刘福红, 陈彦军, 徐生双. 异形强制旋转卸料器在水泥配料站的应用[J]. 水泥技术, 2025, 1(3): 28-32.
[3] 秦中华, 王娜, 石国平, 李铭哲, 王维莉.

辊压机联合粉磨系统节能降碳技术装备研发与应用 [J]. 水泥技术, 2025, 1(2): 5-11.

[4] 栗永刚, 王亚维, 刘晓飞. 9MW余热发电机组循环水泵节能技术改造[J]. 水泥技术, 2025, 1(1): 31-34.
[5] 王炯, 邹军辉, 张国平, 曹伟.

旁路放风余热循环利用系统优化及经济性分析 [J]. 水泥技术, 2024, 1(6): 27-30.

[6] 邹政. 太阳能光伏电站在水泥厂节能减排中的应用[J]. 水泥技术, 2024, 1(2): 78-81.
[7] 王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
[8] 冯云, 李榛, 赵峰, 张文涛, 闫可可. 降低水泥水溶性铬(Ⅵ)方法研究综述[J]. 水泥技术, 2024, 1(1): 78-82.
[9] 甘天锦, 阮黎明. 浅谈LBTF2750型推动式篦式冷却机技术改造[J]. 水泥技术, 2023, 1(5): 62-67.
[10] 孙诗华, 楼美善, 邢愚, 楼凯翔. 缓凝熟料的生产实验[J]. 水泥技术, 2021, 1(1): 78-80.
[11] 户宁.
水泥企业使用石灰石废石生产机制砂的应用
[J]. 水泥技术, 2019, 1(5): 46-51.
[12] 马娇媚, 彭学平, 狄东仁, 赵亮, 陈昌华, 李波, 王伟. 水泥低能耗先进烧成技术研究与应用[J]. 水泥技术, 2019, 1(3): 21-28.
[13] 汪佳杰.
三次风锅炉在水泥窑余热电站的应用
[J]. 水泥技术, 2018, 1(4): 94-96.
[14] 王宜兵, 邵明珠.
窑头电收尘器电改电节能减排技术改造
[J]. 水泥技术, 2018, 1(4): 82-84.
[15] 孙海全. 5 000t/d窑头电改袋方案解析[J]. 水泥技术, 2017, 1(4): 75-77.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview