Please wait a minute...
水泥技术, 2025, 1(3): 11-15    doi: 10.19698/j.cnki.1001-6171.20253011
  节能减排 本期目录 | 过刊浏览 | 高级检索 |
应用窑头循环风系统提高水泥窑余热发电量的实践
中材节能股份有限公司,天津  300400
Practice of Cooler Air Loop System to Increase WHR Power Generation
Sinoma Energy Conservation Co., Ltd. , Tianjin 300400, China
下载:  PDF (5143KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥生产线回转窑窑头高温废气经篦冷机和余热锅炉热回收后,排风温度约为100℃,直接外排存在热量浪费的问题,通过设置窑头循环风系统,可以进一步提高热量利用效率和水泥窑余热发电量。根据热量平衡原理,分析了篦冷机输入输出热量平衡关系,进行了余热锅炉入口热量变化理论计算。结果表明,将窑头外排废气重新引入篦冷机冷却风系统,在其他热量不变的情况下,可以增大窑头余热锅炉入口热量,提高汽轮机做功效率,从而提高余热发电量。以某5 000t/d新型干法水泥熟料生产线为例,阐述了窑头循环风系统设计和安装方案,提出了合理设计循环风管道和引入先进控制技术等优化措施。生产应用表明,设置窑头循环风系统后,吨熟料余热发电量增加了6.38kW·h/t.cl,废气排放和热污染得到了有效控制,环境效益和经济效益显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国平
邹军辉
谢华
关键词:  100%循环风  余热发电  篦冷机  热平衡  节能减排    
Abstract: The high temperature exhaust gas from the rotary kiln head of the cement production line, after undergoing heat recovery through a grate cooler and a waste heat boiler, is discharged at approximately 100°C. Direct emission of this gas results in significant heat waste. By implementing the Cooler Air Loop System, both heat utilization efficiency and waste heat recovery (WHR) power generation can be further enhanced. Based on the heat balance principles, the input-output thermal equilibrium of the grate cooler was analyzed, and theoretical calculations were performed to evaluate heat variations at the waste heat boiler inlet. The results demonstrated that reintroducing the externally emitted kiln head exhaust into the grate cooler’s cooling air system increases the heat input to the boiler without altering other thermal parameters, thereby improving the steam turbine efficiency and boosting power generation.Taking a 5 000t/d dry-process clinker production line as an example, the design and installation of the Cooler Air Loop System were detailed, emphasizing optimization measures such as rational duct layout and advanced control technologies. Practical application showed that after Cooler Air Loop System implementation, WHR power generation increased by 6.38kW·h/t.cl, while exhaust emissions and thermal pollution were effectively reduced, yielding notable environmental and economic benefits. 
Key words:  100% air loop system    waste heat power generation    grate cooler    heat balance    energy conservation and emission reduction
收稿日期:  2025-02-10                出版日期:  2025-05-25      发布日期:  2025-05-25      整期出版日期:  2025-05-25
ZTFLH:  TQ172.625.9  
作者简介:  张国平(1983—),男,硕士,高级工程师,主要从事余热回收利用及节能环保的设计和研究。E-mail:zhangguoping@sinoma-ec.cn
引用本文:    
张国平, 邹军辉, 谢华. 应用窑头循环风系统提高水泥窑余热发电量的实践[J]. 水泥技术, 2025, 1(3): 11-15.
ZHANG Guoping, ZOU Junhui, XIE Hua. Practice of Cooler Air Loop System to Increase WHR Power Generation. Cement Technology, 2025, 1(3): 11-15.
链接本文:  
http://www.cemteck.com/CN/10.19698/j.cnki.1001-6171.20253011  或          http://www.cemteck.com/CN/Y2025/V1/I3/11
[1] 秦中华, 王娜, 石国平, 李铭哲, 王维莉.

辊压机联合粉磨系统节能降碳技术装备研发与应用 [J]. 水泥技术, 2025, 1(2): 5-11.

[2] 武猛, 杨新鑫, 王广顺.

水泥生产余热发电系统一键并网技术及应用 [J]. 水泥技术, 2025, 1(2): 58-61.

[3] 栗永刚, 王亚维, 刘晓飞. 9MW余热发电机组循环水泵节能技术改造[J]. 水泥技术, 2025, 1(1): 31-34.
[4] 王炯, 邹军辉, 张国平, 曹伟.

旁路放风余热循环利用系统优化及经济性分析 [J]. 水泥技术, 2024, 1(6): 27-30.

[5] 周莹莹, 田博, 田哲, 向峥, 裴凌旭.

水泥工厂清洁能源发电方式分析 [J]. 水泥技术, 2024, 1(4): 62-64.

[6] 赵龙.

6 500t/d水泥生产线余热发电孤网运行技术改进 [J]. 水泥技术, 2024, 1(3): 43-46.

[7] 潘磊.

窑头余热锅炉超温原因分析及安全对策 [J]. 水泥技术, 2024, 1(3): 53-57.

[8] 张鑫. 管道应力分析软件AutoPSA中Glif算法报告解读与布管技巧[J]. 水泥技术, 2024, 1(2): 41-49.
[9] 邹政. 太阳能光伏电站在水泥厂节能减排中的应用[J]. 水泥技术, 2024, 1(2): 78-81.
[10] 王炯, 齐树龙. 篦冷机中部取风口流场及温度场数值模拟研究[J]. 水泥技术, 2024, 1(1): 39-44.
[11] 王炯, 齐树龙.

AQC锅炉进风管道保温数值模拟研究 [J]. 水泥技术, 2023, 1(6): 60-67.

[12] 周莹莹, 田博, 向峥, 田哲.

基于水泥厂电能计量系统的新能源发电接入点的选择 [J]. 水泥技术, 2023, 1(6): 82-85.

[13] 甘天锦, 阮黎明. 浅谈LBTF2750型推动式篦式冷却机技术改造[J]. 水泥技术, 2023, 1(5): 62-67.
[14] 丛晓静, 许龙旭, 丛嘉庆, 尤小平. 篦冷机在线监测与智能化控制系统的应用[J]. 水泥技术, 2023, 1(2): 37-.
[15] 李俊. 余热发电汽轮机真空抽气系统节能改造[J]. 水泥技术, 2022, 1(5): 68-71.
[1] . Review and Prospect of Engineering Practice of Waste Disposal in Cement Kiln in China[J]. Cement Technology, 2018, 1(1): 17 -21 .
[2] DI Dongren, TAO Congxi, CHAI Xingteng. Revision of Cement Energy Consumption Standards and Energy Saving Technology(Ⅰ)[J]. Cement Technology, 2018, 1(1): 22 -26 .
[3] LIU Yonggang, GAO Hongwei, XIAO Guiqing. Design Method of Road Structure Using Lean Concrete Base[J]. Cement Technology, 2018, 1(1): 27 -31 .
[4] LIU Xu, LI Liang. Investigation of New Medium Temperature Wear-resistant Alloy Steel[J]. Cement Technology, 2018, 1(1): 32 -34 .
[5] MA Debao. Finite Element Analysis of Inverted Cone in Raw Meal Silo[J]. Cement Technology, 2018, 1(1): 35 -38 .
[6] HAN Zhongqi. [J]. Cement Technology, 2018, 1(1): 38 -48 .
[7] XIE Jianzhong, LIAN Xuewen. Analysis and Solution of Segregation of the Kiln Ash in Continuous Raw Meal Homogenization Silo#br#[J]. Cement Technology, 2018, 1(1): 49 -53 .
[8] GUAN Laiqing, HE Yongxian. [J]. Cement Technology, 2018, 1(1): 54 -59 .
[9] WEI Can, ZHANG Yuanyuan, AI Jun. Application of Cement Intelligent Control System in Overseas Projects[J]. Cement Technology, 2018, 1(1): 60 -64 .
[10] JIN Shuang. [J]. Cement Technology, 2018, 1(1): 72 -73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview